Ir al contenido

Documat


The Akbulut cork is not universal

  • Roberto Ladu [1]
    1. [1] Fakultät für Mathematik, Ruhr Universität Bochum, Germany
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01061-6
  • Enlaces
  • Resumen
    • We exhibit infinitely many exotic pairs of simply-connected, closed 4-manifolds not related by any cork of the infinite family WnW_nWn constructed by Akbulut and Yasui whose first member is the Akbulut cork. In particular, the Akbulut cork is not universal. Moreover we show that, in the setting of manifolds with boundary, there are no ∂\partial∂-universal corks, i.e. there does not exist a cork which relates any exotic pair of simply-connected 4-manifolds with boundary.

  • Referencias bibliográficas
    • Akbulut, S.: A fake compact contractible 4-manifold. Journal of Differential Geometry 33(2), 335–356 (1991)
    • S. Akbulut. 4-manifolds, volume 25. Oxford University Press, 2016
    • S. Akbulut and S. Durusoy. An involution acting nontrivially on Heegaard-Floer homology. In Geometry and topology of manifolds, volume 47...
    • Akbulut, S., Karakurt, C.: Heegaard Floer homology of some Mazur type manifolds. Proc. Amer. Math. Soc. 142(11), 4001–4013 (2014)
    • Akbulut, S., Ruberman, D.: Absolutely exotic compact 4-manifolds. Commentarii Mathematici Helvetici 91(1), 1–19 (2016)
    • Akbulut, S., Yasui, K.: Corks, plugs and exotic structures. J. Gökova Geom. Topol. GGT 2, 40–82 (2008)
    • Akbulut, S., Yasui, K.: Knotting corks. J. Topol. 2(4), 823–839 (2009)
    • Akhmedov, A., Hughes, M.C., Park, B.D.: Geography of simply connected nonspin symplectic 4-manifolds with positive signature. Pacific J. Math....
    • Auckly, D., Kim, H.J., Melvin, P., Ruberman, D.: Equivariant corks. Algebraic & Geometric Topology 17(3), 1771–1783 (2017)
    • Baykur, R.I., Sunukjian, N.: Round handles, logarithmic transforms and smooth 4-manifolds. J. Topol. 6(1), 49–63 (2013)
    • Boyer, S.: Simply-connected 4-manifolds with a given boundary. Trans. Am. Math. Soc. 298, 331–357 (1986)
    • Curtis, C.L., Freedman, M.H., Hsiang, W.C., Stong, R.A.: A decomposition theorem for h-cobordant smooth simply-connected compact 4-manifolds....
    • Fintushel, R., Stern, R.J.: Immersed spheres in 4-manifolds and the immersed Thom conjecture. Turk. J. Math. 19(2), 145–157 (1995)
    • Freedman, M.H.: The topology of four-dimensional manifolds. Journal of Differential Geometry 17(3), 357–453 (1982)
    • Friedman, R., Morgan, J.W.: Algebraic surfaces and Seiberg-Witten invariants. J. Alg. Geom. 6, 445–479 (1997) R. E. Gompf and A. I. Stipsicz....
    • J. Hales. Exotic four-manifolds, corks and Heegaard Floer homology. PhD thesis, Stony Brook University, 2013
    • Iwase, Z.: Dehn surgery along a torus T²-knot II. Jpn. J. Math., New Ser. 16(2), 171–196 (1990) S. Kang. One stabilization is not enough for...
    • Kotschick, D.: Orientation-reversing homeomorphisms in surface geography. Math. Ann. 292(1), 375–381 (1992)
    • Kotschick, D.: Orientations and geometrisations of compact complex surfaces. Bull. London Math. Soc. 29(2), 145–149 (1997)
    • Kreck, M.: h-cobordisms between 1-connected 4-manifolds. Geometry & Topology 5(1), 1–6 (2001)
    • Kronheimer, P.B., Mrowka, T.S.: Monopoles and Three-Manifolds. Cambridge University Press, New Mathematical Monographs (2007) R. Ladu. Protocorks...
    • Lin, J., Ruberman, D., Saveliev, N.: On the Frøyshov invariant and monopole Lefschetz number. Geometry & Topology 22(5), 2865–2942 (2018)
    • Matveyev, R.: A decomposition of smooth simply-connected h-cobordant 4-manifolds. Journal of Differential Geometry 44, 571–582 (1995)
    • Melvin, P., Schwartz, H.: Higher order corks. Invent. Math. 224(1), 291–313 (2021) J. Milnor. Lectures on the h-cobordism theorem. Princeton...
    • Morgan, J.W., Szabó, Z.: Complexity of 4-dimensional h-cobordisms. Invent. Math. 136, 273–286 (1999)
    • Smale, S.: On the structure of manifolds. Am. J. Math. 84(3), 387–399 (1962)
    • Tange, M.: Non-existence theorems on infinite order corks. Adv. Math. 429, 109176 (2023)
    • Taubes, C.H.: The Seiberg-Witten invariants and symplectic forms. Math. Res. Lett. 1, 809–822 (1994)
    • Wall, C.T.: On simply-connected 4-manifolds. J. London Math. Soc. 39, 141–149 (1964)
    • Yasui, K.: Nonexistence of twists and surgeries generating exotic 4-manifolds. Trans. Amer. Math. Soc. 372(8), 5375–5392 (2019)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno