Ir al contenido

Documat


Weyl group symmetry of q-characters

  • Edward Frenkel [1] ; David Hernandez [2]
    1. [1] University of California System

      University of California System

      Estados Unidos

    2. [2] Université Paris Cité and Sorbonne Université, Paris, France
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01072-3
  • Enlaces
  • Resumen
    • We define an action of the Weyl group WWW of a simple Lie algebra g\mathfrak{g}g on a completion of the ring Y\mathcal{Y}Y, which is the codomain of the qqq-character homomorphism of the corresponding quantum affine algebra Uq(g^)U_q(\widehat{\mathfrak{g}})Uq(g). We prove that the subring of WWW-invariants of Y\mathcal{Y}Y is precisely the ring of qqq-characters, which is isomorphic to the Grothendieck ring of the category of finite-dimensional representations of Uq(g^)U_q(\widehat{\mathfrak{g}})Uq(g). This resolves an old puzzle in the theory of qqq-characters. We also identify the screening operators, which were previously used to describe the ring of qqq-characters, as the subleading terms of simple reflections from WWW in a certain limit. Our results have already found applications to the study of the category O\mathcal{O}O of representations of the Borel subalgebra of Uq(g^)U_q(\widehat{\mathfrak{g}})Uq(g) in [Frenkel and Hernandez, Extended Baxter Relations and QQ-Systems for Quantum Affine Algebras, Comm. Math. Phys. 405:190, 2024. (arXiv:2312.13256)] and to the categorification of cluster algebras in [Geiss et al., Representations of shifted quantum affine algebras and cluster algebras I. The simply-laced case, Proc. Lond. Math. Soc. 3(129): e12630, 2024 (arXiv:2401.04616)].

  • Referencias bibliográficas
    • Beck, J.: Braid group action and quantum affine algebras. Comm. Math. Phys. 165, 555–568 (1994)
    • Bouwknegt, P., Pilch, K.: On deformed W-algebras and quantum affine algebras. Adv. Theor. Math. Phys. 2, 357–397 (1998)
    • Chari, V.: Braid group actions and tensor products. Int. Math. Res. Not. 2002, 357–382 (2002)
    • Chari, V., Hernandez, D.: Beyond Kirillov-Reshetikhin modules, in Quantum affine algebras, extended affine Lie algebras, and their applications,...
    • Chari, V., Pressley, A.: A guide to quantum groups. Cambridge University Press, Cambridge (1994)
    • Damiani, I.: From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras: Injectivity. Publ. Res. Inst. Math....
    • Drinfeld, V.: A new realization of Yangians and of quantum affine algebras. Soviet Math. Dokl. 36, 212–216 (1988)
    • Ekhammar, S., Shu, H., Volin, D.: Extended systems of Baxter Q-functions and fused flags I: simply-laced case, Preprint arXiv:2008.10597
    • Ekhammar, S., Volin, D.: Bethe Algebra using Pure Spinors. Lett. Math. Phys 115, 20 (2025) Preprint arXiv:2104.04539
    • Frenkel, E., Hernandez, D.: Baxter’s Relations and Spectra of Quantum Integrable Models. Duke Math. J. 164, 2407–2460 (2015)
    • Frenkel, E., Hernandez, D.: Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers. Comm. Math. Phys. 362, 361–414 (2018)
    • Frenkel, E., Hernandez, D.: Extended Baxter Relations and QQ-Systems for Quantum Affine Algebras. Comm. Math. Phys. 405, 190 (2024). arXiv:2312.13256
    • Frenkel, E., Mukhin, E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Comm. Math. Phys....
    • Frenkel, E., Reshetikhin, N.: The q-characters of representations of quantum affine algebras and deformations of W-Algebras, in Recent Developments...
    • Geiss, C., Hernandez, D., Leclerc, B.: Representations of shifted quantum affine algebras and cluster algebras I. The simply-laced case. Proc....
    • Hernandez, D.: Algebraic approach to q, t-characters. Adv. Math. 187, 1–52 (2004)
    • Hernandez, D., Jimbo, M.: Asymptotic representations and Drinfeld rational fractions. Compos. Math. 148, 1593–1623 (2012)
    • Inoue, R.: Cluster realizations of Weyl groups and q-characters of quantum affine algebras. Lett. Math. Phys. 111, 4 (2021). arXiv:2003.04491
    • Inoue, R., Yamazaki, T.: Invariants of Weyl group action and q-characters of quantum affine algebras. Algebras and Rep. Theory 26, 3167–3183...
    • Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)
    • Kashiwara, M., Kim, M., Oh, S.-J., Park, E.: Braid group action on the module category of quantum affine algebras. Proc. Japan Acad. Ser....
    • Leclerc, B.: Quantum loop algebras, quiver varieties, and cluster algebras, in Representations of Algebras and Related Topics, (A. Skowro...
    • Masoero, D., Raimondo, A., Valeri, D.: Bethe Ansatz and the Spectral Theory of affine Lie algebra-valued connections. The simply-laced case....
    • Masoero, D., Raimondo, A., Valeri, D.: Bethe Ansatz and the Spectral Theory of affine Lie algebravalued connections. The non simply-laced...
    • Mukhin, E., Varchenko, A.: Populations of solutions of the XXX Bethe equations associated to Kac– Moody algebras, in Infinite-dimensional...
    • Mukhin, E., Varchenko, A.: Discrete Miura Opers and Solutions of the Bethe Ansatz Equations. Commun. Math. Phys. 256, 565–588 (2005)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno