Ir al contenido

Documat


A spectral expansion for the symmetric space GLn(E)/GLn(F)

  • Pierre-Henri Chaudouard [1]
    1. [1] Institut Universitaire de France

      Institut Universitaire de France

      París, Francia

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01066-1
  • Enlaces
  • Resumen
    • In this article we state and prove the spectral expansion of theta series attached to the symmetric space GLn(E)/GLn(F)GL_n(E)/GL_n(F)GLn(E)/GLn(F) where n≥1n \geq 1n≥1 and E/FE/FE/F is a quadratic extension of number fields. This is an important step towards the fine spectral expansion of relative trace formulas based on this symmetric space such as the Jacquet–Rallis trace formula for general linear groups. To obtain our result, we extend the work of Jacquet–Lapid–Rogawski on intertwining periods to the case of discrete automorphic representations. The expansion we get is an absolutely convergent integral of relative characters built upon Eisenstein series and intertwining periods. We also establish a crucial but technical ingredient whose interest lies beyond the focus of the article: we prove bounds for discrete Eisenstein series of GLnGL_nGLn on a neighborhood of the imaginary axis extending previous works of Lapid on cuspidal Eisenstein series. We even need a variant of such bounds on some shifts of the imaginary axis.

  • Referencias bibliográficas
    • Arthur, J.: A trace formula for reductive groups I. Terms associated to classes in G(Q). Duke Math. J. 45, 911–952 (1978)
    • Arthur, J.: A trace formula for reductive groups II. Comp. Math. 40, 87–121 (1980)
    • Arthur, J.: The trace formula in invariant form. Ann. of Math. (2) 114(1), 1–74 (1981)
    • Arthur, J.: On the inner product of truncated Eisenstein series. Duke Math. J. 49(1), 35–70 (1982)
    • Arthur, J.: A Paley-Wiener theorem for real reductive groups. Acta Math. 150(1–2), 1–89 (1983)
    • Arthur, J.: An introduction to the trace formula. In Harmonic analysis, the trace formula, and Shimura varieties, volume 4 of Clay Math. Proc.,...
    • Bernstein, J.: On the support of Plancherel measure. J. Geom. Phys. 5(4), 663–710 (1989). (1988)
    • Bernstein, J., Krötz, B.: Smooth Fréchet globalizations of Harish-Chandra modules. Israel J. Math. 199(1), 45–111 (2014)
    • Bernstein, J., Lapid, E.: On the meromorphic continuation of Eisenstein series. J. Amer. Math. Soc. 37(1), 187–234 (2024)
    • Bourbaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre...
    • Beuzart-Plessis, R., Chaudouard, P.-H.: The global Gan-Gross-Prasad conjecture for unitary groups. II. From Eisenstein series to Bessel periods....
    • Beuzart-Plessis, R., Chaudouard, P.-H., Zydor, M.: The global Gan-Gross-Prasad conjecture for unitary groups: the endoscopic case. Pub. Math....
    • Beuzart-Plessis, R., Liu, Y., Zhang, W., Zhu, X.: Isolation of cuspidal spectrum, with application to the Gan-Gross-Prasad conjecture. Ann....
    • Finis, T., Lapid, E.: On the analytic properties of intertwining operators I: global normalizing factors. Bull. Iranian Math. Soc. 43(4),...
    • Flicker, Y.: Twisted tensors and Euler products. Bull. Soc. Math. France 116(3), 295–313 (1988)
    • Finis, T., Lapid, E., Müller, W.: On the degrees of matrix coefficients of intertwining operators. Pacific J. Math. 260(2), 433–456 (2012)
    • Finis, T., Lapid, E., Müller, W.: Limit multiplicities for principal congruence subgroups of GL(n) and SL(n). J. Inst. Math. Jussieu 14(3),...
    • Jacquet, H.: Automorphic spectrum of symmetric spaces. In Representation theory and automorphic forms (Edinburgh, 1996), volume 61 of Proc....
    • Jacquet, H., Lapid, E., Rogawski, J.: Periods of automorphic forms. J. Amer. Math. Soc. 12(1), 173–240 (1999)
    • Jacquet, H., Piatetskii-Shapiro, I.I., Shalika, J.A.: Rankin-Selberg convolutions. Amer. J. Math. 105(2), 367–464 (1983)
    • Kra´skiewicz, W.: Reduced decompositions in Weyl groups. European J. Combin. 16(3), 293–313 (1995)
    • Lapid, E.: On the fine spectral expansion of Jacquet’s relative trace formula. J. Inst. Math. Jussieu 5(2), 263–308 (2006)
    • Lapid, E.: A remark on Eisenstein series. In: Eisenstein series and applications, volume 258 of Progr. Math., pages 239–249. Birkhäuser Boston,...
    • Lapid, E.: On Arthur’s asymptotic inner product formula of truncated Eisenstein series. In On certain L-functions, volume 13 of Clay Math....
    • Lapid, E.: On Arthur’s asymptotic inner product formula of truncated Eisenstein series. In: On certain L-functions, volume 13 of Clay Math....
    • Lapid, E.: On the Harish-Chandra Schwartz space of G(F)\G(A). In: Automorphic representations and L-functions, volume 22 of Tata Inst. Fundam....
    • Lapid, E., Rogawski, J.: Periods of Eisenstein series: the Galois case. Duke Math. J. 120(1), 153–226 (2003)
    • Luo, W., Rudnick, Z., Sarnak, P.: On the generalized Ramanujan conjecture for GL(n). In Automorphic forms, automorphic representations, and...
    • Labesse, J.-P., Waldspurger, J.-L.: La formule des traces tordue d’après le Friday Morning Seminar, volume 31 of CRM Monograph Series. American...
    • Michel, P.: Recent progresses on the subconvexity problem. Astérisque, (438, Séminaire Bourbaki. Vol. 2021/2022. Exposés 1181–1196):353–401,...
    • Müller, W., Speh, B.: Absolute convergence of the spectral side of the Arthur trace formula for GLn. Geom. Funct. Anal. 14(1), 58–93 (2004)....
    • Mœglin, C., Waldspurger, J.-L.: Le spectre résiduel de GL(n). Ann. Sci. École Norm. Sup. (4) 22(4), 605–674 (1989)
    • Mœglin, C., Waldspurger, C.: Décomposition spectrale et séries d’Eisenstein, volume 113 of Progress in Mathematics. Birkhäuser Verlag, Basel,...
    • Müller, W.: The trace class conjecture in the theory of automorphic forms. II. Geom. Funct. Anal. 8(2), 315–355 (1998)
    • Müller, W.: On the spectral side of the Arthur trace formula. Geom. Funct. Anal. 12(4), 669–722 (2002)
    • Müller, W.: Weyl’s law for the cuspidal spectrum of SLn. Ann. of Math. (2) 165(1), 275–333 (2007)
    • Offen, O.: On symplectic periods of the discrete spectrum of GL2n. Israel J. Math. 154, 253–298 (2006)
    • Ramakrishnan, D.: A mild Tchebotarev theorem for GL(n). J. Number Theory 146, 519–533 (2015)
    • Ramakrishnan, D.: A Theorem on GL(n) à la Tchebotarev. arXiv e-prints, page arXiv:1806.08429, (Jun 2018)
    • Rudnick, Z., Sarnak, P.: Zeros of principal L-functions and random matrix theory. 81, pp. 269–322,: A celebration of John F. Nash, Jr (1996)
    • Waldspurger, J.-L.: La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra). J. Inst. Math. Jussieu 2(2), 235–333 (2003)
    • Yamana, S.: Symplectic periods of the continuous spectrum of GL(2n). Ann. Inst. Fourier (Grenoble) 64(4), 1561–1580 (2014)
    • Yamana, S.: Periods of residual automorphic forms. J. Funct. Anal. 268(5), 1078–1104 (2015)
    • Zhang, W.: Automorphic period and the central value of Rankin-Selberg L-function. J. Amer. Math. Soc. 27, 541–612 (2014)
    • Zydor, M.: Les formules des traces relatives de Jacquet-Rallis grossières. J. Reine Angew. Math. 762, 195–259 (2020)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno