Ir al contenido

Documat


Jet functors in noncommutative geometry

  • Autores: Keegan J. Flood, Mauro Mantegazza, Henrik Winther
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01064-3
  • Enlaces
  • Resumen
    • In this article we construct three infinite families of endofunctors Jd(n),Jd[n],and JdnJ_d^{(n)}, J_d^{[n]}, \text{and } J_d^nJd(n),Jd[n],and Jdn on the category of left AAA-modules, where AAA is a unital associative algebra over a commutative ring k\mathbb{k}k, equipped with an exterior algebra Ωd∙\Omega_d^\bulletΩd∙. We prove that these functors generalize the corresponding classical notions of nonholonomic, semiholonomic, and holonomic jet functors, respectively. Our functors come equipped with natural transformations from the identity functor to the corresponding jet functors, which play the rôles of the classical prolongation maps. This allows us to define the notion of linear differential operators with respect to Ωd∙\Omega_d^\bulletΩd∙. We show that if Ωd1\Omega_d^1Ωd1 is flat as a right AAA-module, the semiholonomic jet functor satisfies the semiholonomic jet exact sequence 0⟶⨂AnΩd1⟶Jd[n]⟶Jd[n−1]⟶0.0 \longrightarrow \bigotimes_A^n \Omega_d^1 \longrightarrow J_d^{[n]} \longrightarrow J_d^{[n-1]} \longrightarrow 0.0⟶A⨂nΩd1⟶Jd[n]⟶Jd[n−1]⟶0.

      Moreover, we construct a functor of symmetric (in a suitable noncommutative sense) forms SdnS_d^nSdn associated to Ωd∙\Omega_d^\bulletΩd∙, and proceed to introduce the corresponding noncommutative analogue of the Spencer δ\deltaδ-complex. We give necessary and sufficient conditions under which the holonomic jet functor JdnJ_d^nJdn satisfies the (holonomic) jet exact sequence, 0⟶Sdn⟶Jdn⟶Jdn−1⟶0.0 \longrightarrow S_d^n \longrightarrow J_d^n \longrightarrow J_d^{n-1} \longrightarrow 0.0⟶Sdn⟶Jdn⟶Jdn−1⟶0.

      In particular, for n=1n = 1n=1 the sequence is always exact, for n=2n = 2n=2 it is exact for Ωd1\Omega_d^1Ωd1 flat as a right AAA-module, and for n≥3n \geq 3n≥3, it is sufficient to have Ωd1,Ωd2,and Ωd3\Omega_d^1, \Omega_d^2, \text{and } \Omega_d^3Ωd1,Ωd2,and Ωd3 flat as right AAA-modules and the vanishing of the Spencer δ\deltaδ-cohomology Hδd2H_{\delta_d}^2Hδd2.

  • Referencias bibliográficas
    • Beggs, E.J., Majid, S.: Quantum Riemannian geometry. Springer International Publishing, Berlin (2020)
    • Beilinson, A., Drinfeld, V.: Chiral algebras, vol. 51. American Mathematical Soc, Providence (2004)
    • Bourbaki, N.: Algèbre: Chapitres 1 à 3. Springer Science & Business Media, Berlin (2007)
    • Connes, A.: Noncommutative geometry and reality. J. Math. Phys. 36(11), 6194–6231 (1995)
    • Crainic, M., Salazar, M.A., Struchiner, I.: Multiplicative forms and Spencer operators. Math. Z. 279(3), 939–979 (2015)
    • Cuntz, J., Quillen, D.: Algebra extensions and nonsingularity. J. Am. Math. Soc. 8(2), 251–289 (1995)
    • Deligne, P., Freed, D.: Sign manifesto. Quantum fields and strings: a course for mathematicians, pages 357–363, (1999)
    • Drinfeld, V.G.: Quantum groups. In Proceedings of the International Congress of Mathematicians (Berkeley, 1986), volume 1, pages 798–820,...
    • Goldschmidt, H.: Integrability criteria for systems of nonlinear partial differential equations. J. Differ. Geom. 1(3–4), 269–307 (1967)
    • Goldschmidt, H.: Prolongations of linear partial differential equations. I. A conjecture of Élie Cartan. Ann. Sci. de l’École Norm. Sup. 1,...
    • Heckenberger, I., Kolb, S.: Differential calculus on quantum homogeneous spaces. Lett. Math. Phys. 63(3), 255 (2003)
    • Khavkine, I., Schreiber, U.: Synthetic geometry of differential equations: I. jets and comonad structure. (2017). arXiv:1701.06238
    • Kock, A.: Synthetic geometry of manifolds. Number 180. Cambridge University Press, (2010)
    • Kolár, I., Michor, P.W., Slovák, J.: Natural operations in differential geometry. Springer Science & Business Media, Berlin (2013)
    • Laksov, D., Thorup, A.: The algebra of jets. Mich. Math. J. 48(1), 393–416 (2000)
    • Libermann, P.: Introduction to the theory of semi-holonomic jets. Arch. Math. 33(2), 173–189 (1997)
    • Mac Lane, S.: Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition,...
    • Majid, S., Simão, F.: Quantum jet bundles. Lett. Math. Phys. 113(6), 120 (2023)
    • Manin, Y.I., Raedschelders, T., Van Den Bergh, M.: Quantum groups and non-commutative geometry. Springer, Berlin (1988)
    • Marvan, M.: A note on the category of partial differential equations. In Differential Geometry and Differential Geometry and Its Applications,...
    • Nestruev, J.: Smooth manifolds and observables, vol. 220. Springer Nature, Berlin (2020)
    • Palais, R.S.: Seminar on the Atiyah-Singer index theorem. Annals of Mathematics Studies, No. 57. Princeton University Press, Princeton, N.J.,...
    • Quillen, D.: Formal properties of over-determined systems of linear partial differential equations. PhD thesis, Harvard University, (1964)
    • Sardanashvily, G.: Five lectures on the jet methods in field theory. (1994). arXiv preprint arXiv:hep-th/9411089
    • Sardanashvily, G.: Jets of modules in noncommutative geometry. (2003). arXiv preprint arXiv:math-ph/0310046
    • Spencer, D.C.: Overdetermined systems of linear partial differential equations. Bull. Am. Math. Soc. 75(2), 179–239 (1969)
    • Verbovetsky, A.: Differential operators over quantum spaces. Acta Appl. Math. 49(3), 339–361 (1997)
    • Vinogradov, A.M.: The category of differential equations and its significance for physics. In Proceedings of the conference on differential...
    • Weibel, C.A.: An introduction to homological algebra. Cambridge University Press, Cambridge (1994)
    • Woronowicz, S.L.: Differential calculus on compact matrix pseudogroups (quantum groups). Comm. Math. Phys. 122(1), 125–170 (1989)
    • Zi´lbergle˘ıt, L.V., Lychagin, V.V.: Spencer cohomology of differential equations. In Global AnalysisStudies and Applications IV, pages 121–136....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno