Ir al contenido

Documat


Prosolvable rigidity of surface groups

  • Andrei Jaikin-Zapirain [1] Árbol académico ; Ismael Morales [2]
    1. [1] Universidad Autónoma de Madrid

      Universidad Autónoma de Madrid

      Madrid, España

    2. [2] University of Oxford

      University of Oxford

      Oxford District, Reino Unido

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01082-1
  • Enlaces
  • Resumen
    • Surface groups are known to be the Poincaré duality groups of dimension two since the work of Eckmann, Linnell and Müller. We prove a prosolvable analogue of this result that allows us to show that surface groups are profinitely (and prosolvably) rigid among finitely generated groups that satisfy cd(G) = 2 and b(2) 2 (G) = 0. We explore two other consequences. On the one hand, we derive that if u is a surface word of a finitely generated free group F and v ∈ F is measure equivalent to u in all finite solvable quotients of F, then u and v belong to the same Aut(F)-orbit. Finally, we get a partial result towards Mel’nikov’s surface group conjecture. Let F be a free group of rank n 3 and let w ∈ F. Suppose that G = F/w is a residually finite group all of whose finite-index subgroups are one-relator groups. Then G is 2-free. Moreover, we show that if H2(G;Z) = 0 then G must be a surface group.

  • Referencias bibliográficas
    • Agol, I.: The Virtual Haken Conjecture (with an appendix by Ian Agol, Daniel Groves and Jason Manning). Doc. Math. 18, 1045–1087 (2013)
    • Andožski˘ı, I.V.: Demuškin groups. Mat. Zametki 14, 121–126 (1973). (MR 338195)
    • Baumslag, G.: On generalised free products. Math. Z. 78, 423–438 (1962). (MR 140562)
    • Baumslag, G., Fine, B., Rosenberger, G.: One-relator groups: an overview, Groups St Andrews 2017 in Birmingham, London Math. Soc. Lecture...
    • Bieri, R.: Homological dimension of discrete groups, second ed., Queen Mary College Mathematics Notes, Queen Mary College, Department of Pure...
    • Bridson, M.R., Kochloukova, D.H.: Volume gradients and homology in towers of residually-free groups. Math. Ann. 367(3–4), 1007–1045 (2017)....
    • Bowditch, B.H.: Planar groups and the Seifert conjecture. Journal für die Reine und Angewandte Mathematik. [Crelle’s Journal] 576, 11–62 (2004)
    • Brown, K.S.: Cohomology of groups. Graduate Texts in Mathematics. Springer, New York, NY (1982)
    • Cohn, P.M.: Free ideal rings and localization in general rings, New mathematical monographs, vol. 3. Cambridge University Press (2006)
    • Dicks, W., Dunwoody, M.J.: Groups acting on graphs, Cambridge Studies in Advanced Mathematics, vol. 17. Cambridge University Press, Cambridge...
    • Dummit, D., Labute, J.: On a new characterization of Demuskin groups. Invent. Math. 73(3), 413–418 (1983). (MR 718938)
    • Dicks, W., Linnell, P.A.: L2-Betti numbers of one-relator groups. Math. Ann. 337(4), 855–874 (2007). (MR 2285740)
    • Eckmann, B., Linnell, P.: Poincaré duality groups of dimension two. II. Comment. Math. Helv. 58(1), 111–114 (1983). (MR 699010)
    • Eckmann, B., Müller, H.: Poincaré duality groups of dimension two. Commentarii Mathematici Helvetici 55(1), 1420–8946 (1980)
    • Farrell, F.T.: Poincaré duality and groups of type (FP). Comment. Math. Helv. 50, 187–195 (1975). (MR 382479)
    • Fruchter, J., Morales, I.: Virtual homology of limit groups and profinite rigidity of direct products, To appear in Israel J. Math (2025)
    • Garrido, A., Jaikin-Zapirain, A.: Free factors and profinite completions. Int. Math. Res. Not. IMRN 24, 21320–21345 (2023). (MR 4681289)
    • Gardam, G., Kielak, D., Logan, A. D.: The surface group conjectures for groups with two generators, (2022), arXiv:2202.11093
    • Haglund, F., Wise, D.: Special cube complexes. Geom. Funct. Anal. 17(5), 1551–1620 (2008)
    • Jaikin-Zapirain, A.: Recognition of being fibered for compact 3-manifolds. Geom. Topol. 24(1), 409– 420 (2020). (MR 4080486)
    • Jaikin-Zapirain, A.: The universality of Hughes-free division rings. Sel. Math. New Ser. 27, 74 (2021)
    • Jaikin-Zapirain, A.: The finite and solvable genus of finitely generated free and surface groups. Research in the Mathematical Sciences 10(4),...
    • Jaikin-Zapirain, A., Linton, M.: On the coherence of one-relator groups and their group algebras. Ann. of Math. (2) 201(3), 909–959 (2025)....
    • Kaplansky, I.: Projective modules. Ann. of Math. 68, 372–377 (1958). (MR 100017)
    • Kerckhoff, S.P.: The Nielsen realization problem. Ann. Math. 117(2), 235–265 (1983)
    • Kielak, D.: Residually finite rationally solvable groups and virtual fibring. J. Am. Math. Soc. 33(2), 451–486 (2018)
    • Khukhro, E. I., Mazurov, V. D.: (eds.), The Kourovka notebook, nineteenth ed., Sobolev Institute of Mathematics. Russian Academy of Sciences....
    • Koberda, T., Suciu, A.I.: Residually finite rationally p groups. Commun. Contemp. Math. 22(3), 1950016 (2020). (MR 4082220)
    • Kochloukova, D.H., Zalesskii, P.A.: Profinite and pro-p completions of Poincaré Duality groups of dimension 3. Trans. Am. Math. Soc. 360(4),...
    • Linton, M.: One-relator hierarchies. Duke Math. J. 174(4), 747–802 (2025). https://doi.org/10.1215/ 00127094-2024-0040
    • Lück, W.: Approximating L2-invariants by their finite-dimensional analogues. Geom. Funct. Anal. 4, 455–481 (1994)
    • Louder, L., Wilton, H.: Negative immersions for one-relator groups. Duke Math. J. 171(3), 547–594 (2022)
    • Louder, L., Wilton, H.: Uniform negative immersions and the coherence of one-relator groups, (2022), arXiv:2107.08911
    • Lyndon, R.C.: Cohomology theory of groups with a single defining relation. Ann. Math. 52, 650–665 (1950)
    • Morales, I.: On the profinite rigidity of free and surface groups. Math. Ann. 390(1), 1507–1540 (2024). (MR 4800944)
    • Magee, M., Puder, D.: Surface words are determined by word measures on groups. Israel J. Math. 241(2), 749–774 (2021). (MR 4242543)
    • Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of number fields, Grundlehren der mathematischen Wissenschaften. Springer, Berlin, Heidelberg...
    • Puder, D., Parzanchevski, O.: Measure preserving words are primitive. J. Amer. Math. Soc. 28(1), 63–97 (2015). (MR 3264763)
    • Ribes, L.: Profinite graphs and groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics...
    • Ribes, L., Zalesskii, P.: Profinite groups, second ed., Ergebnisse derMathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys...
    • Sela, Z.: Diophantine geometry over groups I: Makanin-Razborov diagrams. Publications Mathématiques de l’IHÉS 93, 31–105 (2001)
    • Serre, J.-P.: Galois cohomology. Springer Monographs in Mathematics. Springer, Berlin, Heidelberg (1997)
    • Shalen, P. B.: Chapter 19 - Representations of 3-Manifold Groups, Handbook of Geometric Topology (R.J. Daverman and R.B. Sher, eds.), North-Holland,...
    • Stallings, J.R.: On torsion-free groups with infinitely many ends. Ann. of Math. 88(2), 312–334 (1968). (MR 228573)
    • Strebel, R.: A remark on subgroups of infinite index in Poincaré duality groups. Commentarii Mathematici Helvetici 52(3), 317–324 (1977)
    • Watts, C.E.: Intrinsic characterizations of some additive functors. Proceedings of the American Mathematical Society 11, 5–8 (1960)
    • Weibel, C.A.: An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge...
    • Wilton, H.: Essential surfaces in graph pairs. J. Amer.Math. Soc. 31(4), 893–919 (2018). (MR 3836561)
    • Wilton, H.: On the profinite rigidity of surface groups and surface words. Comptes Rendus. Mathématique 359(2), 119–122 (2021)
    • Wilton, H.: On the profinite rigidity of surface groups and surface words. C. R. Math. Acad. Sci. Paris 359, 119–122 (2021). (MR 4237626)
    • Weigel, T.S., Zalesskii, P.: Profinite groups of finite cohomological dimension. C.R. Math. 338, 353– 358 (2004)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno