Ir al contenido

Documat


Drinfeld rational fractions for affine Kac–Moody quantum symmetric pairs

  • Tomasz Przezdziecki [1]
    1. [1] University of Edinburgh

      University of Edinburgh

      Reino Unido

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01088-9
  • Enlaces
  • Resumen
    • We formulate a precise connection between the new Drinfeld presentation of a quantum affine algebra Uqg and the new Drinfeld presentation of affine coideal subalgebras of split type recently discovered by Lu and Wang. In particular, we establish a “factorization formula”, expressing the commuting “Drinfeld–Cartan”-type operators i,k in the coideal subalgebra in terms of the corresponding Drinfeld generators of Uqg, modulo the “Drinfeld positive half” of Uqg. We study the spectra of these operators on finite dimensional representations, and describe them in terms of rational functions with an extra symmetry. These results can be seen as the starting point of a q-character theory for affine Kac–Moody quantum symmetric pairs. Additionally, we prove a compatibility result linking Lusztig’s and the Lu-Wang-Zhang braid group actions.

  • Referencias bibliográficas
    • Appel, A., Przeździecki, T.: Generalized Schur-Weyl dualities for quantum affine symmetric pairs and orientifold KLR algebras. Adv. Math....
    • Appel, A., Vlaar, B.: Trigonometric K-matrices for finite-dimensional representations of quantum affine algebras, Jour. Eur. Math. Soc
    • Appel, A., Vlaar, B.: Universal K-matrices for quantum Kac-Moody algebras. Represent. Theory 26, 764–824 (2022)
    • Baseilhac, P.: Deformed Dolan-Grady relations in quantum integrable models. Nuclear Phys. B 709, 491–521 (2005)
    • Baseilhac, P., Belliard, S.: Generalized -Onsager algebras and boundary affine Toda field theories. Lett. Math. Phys. 93(3), 213–228 (2010)
    • Beck, J.: Braid group action and quantum affine algebras. Comm. Math. Phys. 165(3), 555–568 (1994)
    • Beck, J., Kac, V.G.: Finite-dimensional representations of quantum affine algebras at roots of unity. J. Amer. Math. Soc. 9(2), 391–423 (1996)
    • Balagović, M., Kolb, S.: Universal K-matrix for quantum symmetric pairs. J. Reine Angew. Math. 747, 299–353 (2019)
    • Baseilhac, P., Kolb, S.: Braid group action and root vectors for the -Onsager algebra. Transform. Groups 25(2), 363–389 (2020)
    • Baseilhac, P., Kolb, S.: Braid group action and root vectors for the -Onsager algebra. Transform. Groups 25(2), 363–389 (2020)
    • Bourbaki, N.: Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, Translated from...
    • Bao, H., Wang, W.: Canonical bases arising from quantum symmetric pairs. Invent. Math. 213(3), 1099–1177 (2018)
    • Bao, H., Wang, W.: A new approach to Kazhdan-Lusztig theory of type via quantum symmetric pairs. Astérisque 402, vii+134 (2018)
    • Chari, V., Pressley, A.: Quantum affine algebras. Comm. Math. Phys. 142(2), 261–283 (1991)
    • Chari, V., Pressley, A., Quantum affine algebras and their representations, Representations of groups (Banff, AB,: CMS Conference Proceedings,...
    • Damiani, I.: A basis of type Poincaré-Birkhoff-Witt for the quantum algebra . J. Algebra 161, 291–310 (1993)
    • Damiani, I.: La -matrice pour les algèbres quantiques de type affine non tordu. Ann. Sci. École Norm. Sup. (4) 31(4), 493–523 (1998)
    • Damiani, I.: Drinfeld realization of affine quantum algebras: the relations. Publ. Res. Inst. Math. Sci. 48(3), 661–733 (2012)
    • Damiani, I.: From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras: injectivity. Publ. Res. Inst. Math....
    • Ding, J.T., Frenkel, I.B.: Isomorphism of two realizations of quantum affine algebra . Comm. Math. Phys. 156(2), 277–300 (1993)
    • Dobson, L., Kolb, S.: Factorisation of quasi -matrices for quantum symmetric pairs. Selecta Math. (N.S.) 25(4), 63 (2019)
    • Drinfel’d, V.G.: A new realization of Yangians and of quantum affine algebras. Dokl. Akad. Nauk SSSR 296(1), 13–17 (1987)
    • Drinfeld, V. G.: Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math....
    • Ehrig, M., Stroppel, C.: Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality. Adv. Math. 331, 58–142 (2018)
    • Frenkel, E., Mukhin, E.: Combinatorics of -characters of finite-dimensional representations of quantum affine algebras. Comm. Math. Phys....
    • Frenkel, E., Mukhin, E.: The Hopf algebra . Selecta Math. (N.S.) 8(4), 537–635 (2002)
    • Frenkel, E., Reshetikhin, N.: The -characters of representations of quantum affine algebras and deformations of -algebras, Recent developments...
    • Gow, L., Molev, A.: Representations of twisted -Yangians. Selecta Math. (N.S.) 16(3), 439–499 (2010)
    • Gautam, S., Toledano Laredo, V.: Yangians, quantum loop algebras, and abelian difference equations. J. Amer. Math. Soc. 29(3), 775–824 (2016)
    • Hernandez, D.: Representations of quantum affinizations and fusion product. Transform. Groups 10(2), 163–200 (2005)
    • Hernandez, D.: The Kirillov-Reshetikhin conjecture and solutions of -systems. J. Reine Angew. Math. 596, 63–87 (2006)
    • Hernandez, D.: Drinfeld coproduct, quantum fusion tensor category and applications. Proc. Lond. Math. Soc. (3) 95(3), 567–608 (2007)
    • Hernandez, D.: Simple tensor products. Invent. Math. 181(3), 649–675 (2010)
    • Hernandez, D.: Representations of shifted quantum affine algebras, Int. Math. Res. Not. IMRN, no. 13, 11035–11126 (2023)
    • Hernandez, D., Jimbo, M.: Asymptotic representations and Drinfeld rational fractions. Compos. Math. 148(5), 1593–1623 (2012)
    • Hernandez, D., Leclerc, B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154(2), 265–341 (2010)
    • Hernandez, D.: Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. 701, 77–126 (2015)
    • Iorgov, N. Z., Klimyk, A. U.: Classification theorem on irreducible representations of the -deformed algebra , Int. J. Math. Math. Sci.,...
    • Ito, T., Terwilliger, P.: The Drinfel’d polynomial of a tridiagonal pair, arXiv: 0805.1465, (2008)
    • Ito, T., Terwilliger, P.: The augmented tridiagonal algebra. Kyushu J. Math. 64(1), 81–144 (2010)
    • Iwahori, N., Matsumoto, H.: On some Bruhat decomposition and the structure of the Hecke rings of -adic Chevalley groups. Inst. Hautes Études...
    • Jimbo, M.: A -difference analogue of and the Yang-Baxter equation. Lett. Math. Phys. 10(1), 63–69 (1985)
    • Kashiwara, M.: On level-zero representations of quantized affine algebras. Duke Math. J. 112(1), 117–175 (2002)
    • Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras. Invent. Math. 211(2), 591–685...
    • Kolb, S.: Quantum symmetric Kac-Moody pairs. Adv. Math. 267, 395–469 (2014)
    • Kolb, S., Pellegrini, J.: Braid group actions on coideal subalgebras of quantized enveloping algebras. J. Algebra 336, 395–416 (2011)
    • Khoroshkin, S.M., Tolstoy, V.N., Twisting of quantum (super-) algebras, Generalized symmetries in physics (Clausthal.: World Sci. Publ. River...
    • Letzter, G.: Symmetric pairs for quantized enveloping algebras. J. Algebra 220(2), 729–767 (1999)
    • Letzter, G.: Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge...
    • Letzter, G.: Cartan subalgebras for quantum symmetric pair coideals. Represent. Theory 23, 88–153 (2019)
    • Li, J.-R., Przeździecki, T.: Compatibility of Drinfeld presentations for split affine Kac-Moody quantum symmetric pairs. Lett. Math. Phys....
    • Li, J.-R., Przeździecki, T.: Boundary -characters of evaluation modules for split quantum affine symmetric pairs, arXiv: 2504.14042, (2025)
    • Lu, M., Ruan, S., Wang, W.: Hall algebra of Jordan quiver and Hall–Littlewood functions, arXiv: 2104.12336, (2019)
    • Lu, M., Ruan, S., Wang, W.: Hall algebra of the projective line and -Onsager algebra. Trans. Amer. Math. Soc. 376(2), 1475–1505 (2023)
    • Levendorskii, S., Soibelman, Y., Stukopin, V.: The quantum Weyl group and the universal quantum -matrix for affine Lie algebra . Lett. Math....
    • Lusztig, G.: Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010, Reprint of the 1994 edition
    • Lu, M., Wang, W.: A Drinfeld type presentation of affine quantum groups I: split ADE type. Adv. Math. 393(108111), 46 (2021)
    • Lu, M., Wang, W.: Hall algebras and quantum symmetric pairs of Kac-Moody type. Adv. Math. 410, 109215 (2023)
    • Lu, M., Wang, W., Zhang, W.: Braid group action and quasi-split affine quantum groups I. Represent. Theory 27, 1000–1040 (2023)
    • Lu, M., Wang, W., Zhang, W.: Braid group action and quasi-split affine quantum groups II: higher rank. Comm. Math. Phys. 405, 142 (2024)
    • Molev, A.: Representations of the twisted quantized enveloping algebra of type , Mosc. Math. J. 6, no. 3, 531–551, 588 (2006)
    • Molev, A.I., Ragoucy, E., Sorba, P.: Coideal subalgebras in quantum affine algebras. Rev. Math. Phys. 15(8), 789–822 (2003)
    • Nakajima, H.: Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Amer. Math. Soc. 14(1), 145–238 (2001)
    • Olshanskiĭ, G. I.: Twisted Yangians and infinite-dimensional classical Lie algebras, Quantum groups (Leningrad, 1990), Lecture Notes in Math.,...
    • Przeździecki, T.: Representations of orientifold Khovanov-Lauda-Rouquier algebras and the Enomoto-Kashiwara algebra. Pacific J. Math. 322(2),...
    • Reshetikhin, N.Y., Semenov-Tian-Shansky, M.A.: Central extensions of quantum current groups. Lett. Math. Phys. 19(2), 133–142 (1990)
    • Terwilliger, P.: The subconstituent algebra of an association scheme. III. J. Alg. Combin. 2(2), 177–210 (1993)
    • Terwilliger, P.: Two relations that generalize the q-Serre relations and the Dolan-Grady relations, pp. 377–398. World Scientific Publishing...
    • Terwilliger, P.: The Lusztig automorphism of the -Onsager algebra. J. Algebra 506, 56–75 (2018)
    • Watanabe, H.: Classical weight modules over quantum groups. J. Algebra 578, 241–302 (2021)
    • Wenzl, H.: On representations of . Trans. Amer. Math. Soc. 373(5), 3295–3322 (2020)
    • Wang, W., Zhang, W.: An intrinsic approach to relative braid group symmetries on quantum groups. Proc. London Math, Soc (2023)
    • Zhang, W.: A Drinfeld-type presentation of affine quantum groups II: split BCFG type. Lett. Math. Phys. 112(5), 89 (2022)
    • Zhang, W.: Relative braid group symmetries on quantum groups of Kac-Moody type. Selecta Math. (N.S.) 29(4), 59 (2023)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno