Ir al contenido

Documat


The Synthetic Hilbert Additive Group Scheme

  • Alice Hedenlund [1] ; Tasos Moulinos [2]
    1. [1] Norwegian University of Science and Technology

      Norwegian University of Science and Technology

      Noruega

    2. [2] University of Paris-Saclay

      University of Paris-Saclay

      Arrondissement de Palaiseau, Francia

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01085-y
  • Enlaces
  • Resumen
    • We construct a lift of the degree filtration on the integer-valued polynomials to (even MU-based) synthetic spectra. Namely, we construct a bialgebra in modules over the evenly filtered sphere spectrum which base-changes to the degree filtration on the integer-valued polynomials. As a consequence, we may lift the Hilbert additive group scheme to a spectral group scheme over A1/Gm. We study the cohomology of its deloopings, and show that one obtains a lift of the filtered circle, studied in [25]. At the level of quasi-coherent sheaves, one obtains synthetic lifts of the Z-linear ∞- categories of S1 fil-representations. Our constructions crucially rely on the use of the even filtration of Hahn–Raksit–Wilson; it is linearity with respect to the even filtered sphere that powers the results of this work.

  • Referencias bibliográficas
    • Antieau, B.: Spherical Witt vectors and integral models for spaces, arXiv preprint arXiv:2308.07288 (2023)
    • Antieau, B., Riggenbach, N.: Cyclotomic synthetic spectra, arXiv preprint arXiv:2411.19929 (2024)
    • Bhatt, B., Lurie, J.: Absolute prismatic cohomology, arXiv preprint arXiv:2201.06120 (2022)
    • Bhatt, B., Morrow, M., Scholze, P.: Topological Hochschild homology and integral p-adic Hodge theory. Publications mathématiques de l’IHÉS...
    • Burklund, R., Schlank, T.M., Yuan, A.: The chromatic Nullstellensatz, arXiv preprint (2022)
    • Cartier, P.: Groupes algébriques et groupes formels, Colloq. théorie des groupes algébriques, 87–111 (1962)
    • Carmeli, S., Nikolaus, T., Yuan, A.: Maps between spherical group rings, arXiv preprint arXiv:2405.06448 (2024)
    • Drinfeld, V.:A 1-dimensional formal group over the prismatization of Spf(Zp), arXiv preprint arXiv:2107.11466 (2023).
    • Gheorghe, B., Isaksen, D.C., Krause, A., Ricka, N.: C-motivic modular forms. J. Eur. Math. Soc. (JEMS) 24(10), 3597–3628 (2022)
    • Hazewinkel, M.: Formal groups and applications, Pure and Applied Mathematics, vol. 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers],...
    • Hedenlund, A.P.: Multiplicative Tate spectral sequences (2021)
    • Horel, G.: Binomial rings and homotopy theory. Journal für die reine und angewandte Mathematik (Crelles Journal) 2024(813), 283–305 (2024)
    • Hedenlund, A., Rognes, J.: A multiplicative Tate spectral sequence for compact Lie group actions, Vol. 294, American Mathematical Society,...
    • Hahn, J., Raksit, A.,Wilson, D.: A motivic filtration on the topological cyclic homology of commutative ring spectra, arXiv preprint (2023)
    • Kubrak, D., Shuklin, G., Zakharov, A.: Derived binomial rings I: Integral Betti cohomology of log schemes, arXiv preprint arXiv:2308.01110...
    • Lurie, J.: Elliptic cohomology I: Spectral abelian varieties (2017)
    • Lurie, J.: Higher algebra (2017)
    • Lurie, J.: Elliptic cohomology II: Orientations (2018)
    • Lurie, J.: Spectral algebraic geometry, preprint (2018)
    • Mathew, A.: The Galois group of a stable homotopy theory. Adv. Math. 291, 403–541 (2016)
    • Mathew, A., Mondal, S.: Affine stacks and derived rings, (2024)
    • Moulinos, T.: The geometry of filtrations, Bulletin of the London Mathematical Society (2021)
    • Moulinos, T.: Cogroupoid structures on the circle and the Hodge degeneration. Forum Math. Sigma 12, e10 (2024)
    • Moulinos, T.: Filtered formal groups, Cartier duality, and derived algebraic geometry. Épijournal Géom. Algébrique 8(2), 41 (2024)
    • Moulinos, T., Robalo, M., Toën, B.: A universal Hochschild-Kostant-Rosenberg theorem. Geometry & Topology 26(2), 777–874 (2022)
    • Pstra˛gowski, P.: Synthetic spectra and the cellular motivic category. Invent. Math. 232(2), 553–681 (2023)
    • Raksit, A.: Hochschild homology and the derived de Rham complex revisited, arXiv preprint (2020)
    • Simpson, C.T.: Nonabelian Hodge theory, Proceedings of the international congress of mathematicians, 747–756 (1990)
    • Toën, B.: Champs affines. Sel. Math. New Ser. 12(1), 39–134 (2006)
    • Toën, B.: Le problème de la schématisation de Grothendieck revisité. Épijournal Géom. Algébrique 4(14), 21 (2020)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno