Ir al contenido

Documat


A new spin on Hurwitz theory and ELSV via theta characteristics

  • Alessandro Giacchetto [1] ; Reinier Kramer [1] ; Danilo Lewanski [2]
    1. [1] Max Planck Institute for Mathematics

      Max Planck Institute for Mathematics

      Kreisfreie Stadt Bonn, Alemania

    2. [2] Inst. Hautes Études Scientifiques (IHES), Paris, France
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01077-y
  • Enlaces
  • Resumen
    • We study spin Hurwitz numbers, which count ramified covers of the Riemann sphere with a sign coming from a theta characteristic. These numbers are known to be related to Gromov–Witten theory of Kähler surfaces and to representation theory of the Sergeev group, and are generated by BKP tau-functions. We use the latter interpretation to give polynomiality properties of these numbers and we derive a spectral curve which we conjecture computes spin Hurwitz numbers via a new type of topological recursion. We prove that this conjectural topological recursion is equivalent to an ELSV-type formula, expressing spin Hurwitz numbers in terms of the Chiodo class twisted by the 2-spin Witten class.

  • Referencias bibliográficas
    • Abramovich, D., Jarvis, T.J.: Moduli of twisted spin curves. Proc. Amer. Math. Soc. 131(3), 685–699 (2003). https://doi.org/10.1090/S0002-9939-02-06562-0....
    • Alexandrov, A., Shadrin, S.: Elements of spin Hurwitz theory: closed algebraic formulas, blobbed topological recursion, and a proof of the...
    • Andersen, J.E., Borot, G., Charbonnier, S., Delecroix, V., Giacchetto, A., Lewa´nski, D., Wheeler, C.: Topological recursion for Masur-Veech...
    • Andersen, J.E., Borot, G., Chekhov, L.O., Orantin, N.: The ABCD of topological recursion. Adv. Math.439(109473), 105 (2024). https://doi.org/10.1016/j.aim.2023.109473....
    • Atiyah, M.F.: Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. (4) 4(1), 47–62 (1971). https://doi.org/10.24033/asens.1205
    • Bloch, S., Okounkov, A.: The character of the infinite wedge representation. Adv. Math. 149(1), 1–60 (2000). https://doi.org/10.1006/aima.1999.1845....
    • Borot, G., Eynard, B., Mulase, M., Safnuk, B.: A matrix model for simple Hurwitz numbers, and topological recursion. J. Geom. Phys. 61(2),...
    • Borot, G., Kramer, R., Lewa´nski, D., Popolitov, A., Shadrin, S.: Special cases of the orbifold version of Zvonkine’s r-ELSV formula. Michigan...
    • Hodge theory to integrability and TQFT: tt∗ -geometry. Vol. 78. Amer. Math. Soc., Providence, RI, pp. 263–283 (2008). https://doi.org/10.1090/pspum/078/2483754....
    • Caporaso, L., Casagrande, C., Cornalba, M.: Moduli of roots of line bundles on curves. Trans. Amer. Math. Soc. 359(8), 3733–3768 (2007). https://doi.org/10.1090/S0002-9947-07-04087-1....
    • Chen, D., Möller, M., Sauvaget, A.: Masur–Veech volumes and intersection theory: the principal strata of quadratic differentials. In: Duke...
    • Chiodo, A.: The Witten top Chern class via K-theory. J. Algebraic Geom. 15(4), 681–707 (2006). https://doi.org/10.1090/S1056-3911-06-00444-9....
    • Chiodo, A.: Stable twisted curves and their r-spin structures. Ann. Inst. Fourier 58(5), 1635–1689 (2008). https://doi.org/10.5802/aif.2394....
    • Chiodo, A.: Towards an enumerative geometry of the moduli space of twisted curves and rrth roots. Compos. Math. 144(6), 1461–1496 (2008)....
    • Chiodo, A., Zvonkine, D.: Twisted r-spin potential and Givental’s quantization. Adv. Theor. Math. Phys. 13(5), 1335–1369 (2009). https://doi.org/10.4310/ATMP.2009.v13.n5.a3....
    • Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5(4), 329–359 (1996). https://doi.org/10.1007/BF02124750
    • Cornalba, M.: Moduli of curves and theta-characteristics. In: Lectures on Riemann surfaces. World Sci. Publ., Teaneck, NJ, pp. 560–589, (1989)....
    • Costantini, M., Sauvaget, A., Schmitt, J.: Integrals of ψ-classes on twisted double ramification cycles and spaces of differentials. In: (2021)....
    • Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations IV. A new hierarchy of soliton equations of KP-type....
    • Date, E., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations II. Vertex operators and τ tau functions. Proc. Japan Acad....
    • Dunin-Barkowski, P., Kramer, R., Popolitov, A., Shadrin, S.: Loop equations and a proof of Zvonkine’s qr-ELSV formula. Ann. Sci. É c. Norm....
    • Dunin-Barkowski, P., Norbury, P., Orantin, N., Popolitov, A., Shadrin, S.: Primary invariants of Hurwitz Frobenius manifolds. In: 2016 AMS...
    • Dunin-Barkowski, P., Orantin, N., Shadrin, S., Spitz, L.: Identification of the Givental formula with the spectral curve topological recursion...
    • Ekedahl, T., Lando, S., Shapiro, M., Vainshtein, A.: Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146(2), 297–327...
    • Eskin, A., Okounkov, A., Pandharipande, R.: The theta characteristic of a branched covering. Adv. Math. 217(3), 873–888 (2008). https://doi.org/10.1016/j.aim.2006.08.001....
    • Eynard, B.: Invariants of spectral curves and intersection theory of moduli spaces of complex curves. Commun. Number Theory Phys. 8, 541–588...
    • Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007). https://doi.org/10.4310/CNTP.2007.v1.n2.a4....
    • Foda, O., Wheeler, M., Zuparic, M.: On free fermions and plane partitions. J. Algebra 321(11), 3249– 3273 (2009). https://doi.org/10.1016/j.jalgebra.2008.08.021....
    • Frobenius, F.G.: Über die Charaktere der symmetrischen Gruppe. Sitzungsberichte K. Preuss. Ak. Wiss. 1900, 516–534 (1900)
    • Giacchetto, A., Kramer, R., Lewa´nski, D., Sauvaget, A.: The spin Gromov–Witten/Hurwitz correspondence for P 1. In: J. Eur. Math. Soc. Published...
    • Giacchetto, A., Lewa´nski, D., Norbury, P.: An intersection-theoretic proof of the Harer-Zagier formula. Algebraic Geom. 10(2), 130–147 (2023)....
    • Givental, A.B.: Gromov-Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J.1(4), 551–568 (2001). https://doi.org/10.17323/1609-4514-2001-1-4-551-568....
    • Gunningham, S.: Spin Hurwitz numbers and topological quantum field theory. Geom. Topol. 20(4), 1859–1907 (2016). https://doi.org/10.2140/gt.2016.20.1859....
    • Hahn, M.A., Kramer, R., Lewa´nski, D.: Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d’enfant,...
    • Hurwitz, A.: Über Riemann’sche Flächen mit gegebenen Verzweigungspunkten. Math. Ann. 39, 1–61 (1891). https://doi.org/10.1007/BF01199469
    • Hurwitz, A.: Über die Anzahl der Riemann’schen Flächen mit gegebenen Verzweigungspunkten. Math. Ann. 55, 53–66 (1901). https://doi.org/10.1007/BF01448116
    • Ivanov, V.N.: Gaussian limit for projective characters of large symmetric groups. J. Math. Sci. 121(3), 2330–2344 (2004). https://doi.org/10.1023/B:JOTH.0000024615.07311.fe
    • Janda, F., Pandharipande, R., Pixton, A., Zvonkine, D.: Double ramification cycles on the moduli spaces of curves. Publ. Math. Inst. Hautes...
    • Jarvis, T.J.: Torsion-free sheaves and moduli of generalized spin curves. Compos. Math. 110(3), 291– 333 (1998). https://doi.org/10.1023/A:1000209527158....
    • Jarvis, T.J.: Geometry of the moduli of higher spin curves. Internat. J. Math. 11(5), 637–663 (2000). https://doi.org/10.1142/S0129167X00000325....
    • Jarvis, T.J., Kimura, T., Vaintrob, A.: Moduli spaces of higher spin curves and integrable hierarchies. Compos. Math. 126(2), 157–212 (2001)....
    • Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19(3), 943–1001 (1983). https://doi.org/10.2977/prims/1195182017
    • Johnson, P.D.: Double Hurwitz numbers via the infinite wedge. Trans. Am. Math. Soc. 367(9), 6415– 6440 (2015). https://doi.org/10.1090/S0002-9947-2015-06238-2....
    • Józefiak, T.: Semisimple superalgebras. Algebra Some Current Trends. Vol. 1352. Lecture Notes in Math. Springer, Berlin, 1988, pp. 96–113....
    • Józefiak, T.: Characters of projective representations of symmetric groups. Exposition. Math. 7(3), 193–247 (1989)
    • Józefiak, T.: A class of projective representations of hyperoctahedral groups and Schur Q-functions. In: Topics in algebra. Vol. 26. Banach...
    • Józefiak, T.: Relating spin representations of symmetric and hyperoctahedral groups. J. Pure Appl. Algebra 152(1), 187–193 (2000). https://doi.org/10.1016/S0022-4049(99)00143-7
    • Kac, V., van de Leur, J.: Polynomial tau-functions of BKP and DKP hierarchies. J. Math. Phys. 60(071702), 10 (2019). https://doi.org/10.1063/1.5085310....
    • Kontsevich, M., Manin, Y.: Gromov-Witten classes, quantum cohomology, and enumerative geometry. Commun. Math. Phys. 164(3), 525–562 (1994)....
    • Kramer, R., Lewa´nski, D., Popolitov, A., Shadrin, S.: Towards an orbifold generalization of Zvonkine’s r-ELSV formula. Trans. Amer. Math....
    • Kramer, R., Lewa´nski, D., Shadrin, S.: Quasi-polynomiality of monotone orbifold Hurwitz numbers and Grothendieck’s dessins d’enfants. Doc....
    • Lee, J.: A note on Gunningham’s formula. Bull. Aust. Math. Soc. 98(3), 389–401 (2018). https://doi. org/10.1017/S0004972718000618. arXiv:...
    • Lee, J.: A square root of Hurwitz numbers. manuscripta math. 162, 99–113 (2019). https://doi.org/10. 1007/s00229-019-01113-0. arXiv: 1807.03631...
    • Lee, J., Parker, T.H.: A structure theorem for the Gromov-Witten invariants of Kähler surfaces. J. Differential Geom. 77(3), 483–513 (2007)....
    • Lee, J., Parker, T.H.: Spin Hurwitz numbers and the Gromov-Witten invariants of Kähler surfaces. Comm. Anal. Geom. 21(5), 1015–1060 (2013)....
    • Lewa´nski, D., Popolitov, A., Shadrin, S., Zvonkine, D.: Chiodo formulas for the r-th roots and topological recursion. Lett. Math. Phys. 107(5),...
    • MacDonald, I. G (1998) Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford, pp. xii+ 488
    • Maulik, D., Pandharipande, R.: New calculations in Gromov-Witten theory. Pure Appl. Math. Q. 4(2), 469–500 (2008). https://doi.org/10.4310/PAMQ.2008.v4.n2.a7....
    • Mironov, A., Morozov, A., Natanzon, S.: Cut-and-join structure and integrability for spin Hurwitz numbers. Eur. Phys. J. C 80(2), 97 (2020)....
    • Mironov, A., Morozov, A., Natanzon, S., Orlov, A.Y.: Around spin Hurwitz numbers. Lett. Math. Phys. 111(124), 39 (2021). https://doi.org/10.1007/s11005-021-01457-3....
    • Miwa, T., Jimbo, M., Date, E.: Solitons: Differential equations, symmetries and infinite dimensional algebras. Trans. by M. Reid. Vol. 135....
    • Mulase, M., Shadrin, S., Spitz, L.: The spectral curve and the Schrödinger equation of double Hurwitz numbers and higher spin structures....
    • Mumford, D.: Theta characteristics of an algebraic curve. Ann. Sci. École Norm. Sup. (4) 4(2), 181–192 (1971). https://doi.org/10.24033/asens.1209
    • Okounkov, A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7(4), 447–453 (2000). https:// doi.org/10.4310/MRL.2000.v7.n4.a10. arXiv:...
    • Okounkov, A., Pandharipande, R.: Gromov-Witten theory, Hurwitz theory, and completed cycles. Ann. of Math. 163(2), 517–560 (2006). https://doi.org/10.4007/annals.2006.163.517....
    • Olsson, M.C.: (Log) twisted curves. Compos. Math. 143(2), 476–494 (2007). https://doi.org/10.1112/S0010437X06002442
    • Pandharipande, R., Pixton, A., Zvonkine, D.: Relations on Mg,n via 3-spin structures. J. Amer. Math. Soc. 28(1), 279–309 (2015). https://doi.org/10.1090/S0894-0347-2014-00808-0....
    • Reuveni, S.: Catalan’s trapezoids. Probab. Engrg. Inform. Sci. 28(3), 353–361 (2014). https://doi.org/10.1017/S0269964814000047
    • Rossi, P.: Gromov-Witten invariants of target curves via symplectic field theory. J. Geom. Phys. 58(8), 931–941 (2008). https://doi.org/10.1016/j.geomphys.2008.02.012....
    • Schur, I.: Über eine Klasse von Matrizen die sich einer gegebenen Matrix zuordnen lassen. Ges. Abhandlungen 1, 1–72 (1901)
    • Schur, I.: Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. J. Reine Angew. Math....
    • Sergeev, A.N.: The tensor algebra of the identity representation as a module over the Lie superalgebras Gl(n, m) and Q(n). Mat. Sb. (N.S.)...
    • Shadrin, S.: BCOV theory via Givental group action on cohomological fields theories. Mosc. Math. J. 9(2), 411–429 (2009). https://doi.org/10.17323/1609-4514-2009-9-2-411-429....
    • Shadrin, S., Spitz, L., Zvonkine, D.: On double Hurwitz numbers with completed cycles. J. LondonMath. Soc. 86(2), 407–432 (2012). https://doi.org/10.1112/jlms/jds010....
    • Shadrin, S., Spitz, L., Zvonkine, D.: Equivalence of ELSV and Bouchard-Maiño conjectures for rspin Hurwitz numbers. Math. Ann. 361, 611–645...
    • Stanford, D., Witten, E.: JT gravity and the ensembles of random matrix theory. Adv. Theor. Math. Phys. 24(6), 1475–1680 (2020). https://doi.org/10.4310/ATMP.2020.v24.n6.a4....
    • Teleman, C.: The structure of 2D semi-simple field theories. Invent. Math. 188(3), 525–588 (2012). https://doi.org/10.1007/s00222-011-0352-5....
    • Yamaguchi, M.: A duality of the twisted group algebra of the symmetric group and a Lie superalgebra. J. Algebra 222(1), 301–327 (1999). https://doi.org/10.1006/jabr.1999.8049....
    • You, Y.: Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups. In: Infinite-Dimensional Lie Algebras...
    • Zvonkine, D.: A preliminary text on the r r-ELSV formula. Preprint. (2006)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno