Ir al contenido

Documat


Lefschetz fibrations on cotangent bundles and some plumbings

  • Sangjin Lee [1]
    1. [1] Korea Institute for Advanced Study

      Korea Institute for Advanced Study

      Corea del Sur

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01089-8
  • Enlaces
  • Resumen
    • Lefschetz fibrations are powerful tools in studying symplectic topology. The following are a few examples of that: When a Lefschetz fibration is given, one can define the Fukaya-Seidel category as described in [24]. In [2, 17, 18], the authors used Lefschetz fibrations for constructing diffeomorphic pairs of different Weinstein manifolds. When Wu [27] studied the symplectic mapping class group of the Milnor fiber of An-type, the well-known Lefschetz fibration of the Milnor fiber played a key role. McLean [20, 21] showed that one could compute a symplectic homology of a Liouville manifold from a Lefschetz fibration and its monodromy map. It is natural to ask which symplectic manifolds admit Lefschetz fibrations. Giroux and Pardon [14] gave a wonderful answer. They proved that every Stein manifold should admit a Lefschetz fibration. Moreover, [14] proved that every Weinstein manifold should admit a Lefschetz fibration indirectly, based on the equivalence between Stein and Weinstein manifolds.

  • Referencias bibliográficas
    • Abouzaid, M.: A topological model for the fukaya categories of plumbings. J. Differential Geom. 87(1), 1–80 (2011)
    • Abouzaid, M., Seidel, P.: Altering symplectic manifolds by homologous recombination. (2010). arXiv preprint arXiv:1007.3281
    • Acu, B.: Contact open books and symplectic Lefschetz fibrations (survey). In Advances in mathematical sciences, volume 21 of Assoc. Women...
    • Alvarez-Gavela, D., Eliashberg, Y., Nadler, D.: Positive arborealization of polarized weinstein manifolds, (2020)
    • Álvarez-Gavela, D., Eliashberg, Y., Nadler, D.: Arboreal models and their stability. J. Symplectic Geom. 21(2), 331–381 (2023)
    • Avdek, R.: Liouville hypersurfaces and connect sum cobordisms. J. Symplectic Geom. 19(4), 865–957 (2021)
    • Bourgeois, F., Ekholm, T., Eliashberg, Y.: Effect of legendrian surgery. Geom. Topol. 16(1), 301–389 (2012). (With an appendix by Sheel Ganatra...
    • Choa, D., Karabas, D., Lee, S.: Exotic families of symplectic manifolds with milnor fibers of ade-type. Math. Z. 307(4), 74 (2024)
    • Cieliebak, K.: Subcritical stein manifolds are split. (2002). arXiv preprint math/0204351
    • Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and back, volume 59 of American Mathematical Society Colloquium Publications. American...
    • Eliashberg, Y.: Weinstein manifolds revisited. In Modern geometry: a celebration of the work of Simon Donaldson, volume 99 of Proc. Sympos....
    • Geiges, H.: Contact geometry. In Handbook of differential geometry. Vol. II, pages 315–382. Elsevier/North-Holland, Amsterdam, (2006)
    • Geiges, H.: An introduction to contact topology, volume 109 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge...
    • Giroux, E., Pardon, J.: Existence of lefschetz fibrations on stein and weinstein domains. Geom. Topol. 21(2), 963–997 (2017)
    • Johns, J.: Lefschetz fibrations on cotangent bundles of two-manifolds. In Proceedings of the Gökova Geometry-Topology Conference 2011, pages...
    • Lee, S.: Towards a higher-dimensional construction of stable/unstable lagrangian laminations. Algebr. Geom. Topol. 24(2), 655–716 (2024)
    • Maydanskiy, M.: Exotic symplectic manifolds from Lefschetz fibrations. ProQuest LLC, Ann Arbor, MI, (2009). Thesis (Ph.D.)–Massachusetts Institute...
    • Maydanskiy, M., Seidel, P.: Lefschetz fibrations and exotic symplectic structures on cotangent bundles of spheres. J. Topol. 3(1), 157–180...
    • Maydanskiy, M., Seidel, P.: Corrigendum: lefschetz fibrations and exotic symplectic structures on cotangent bundles of spheres [mr2608480]....
    • McLean, M.: Lefschetz fibrations and symplectic homology. Geom. Topol. 13(4), 1877–1944 (2009)
    • McLean, M.: Symplectic homology of lefschetz fibrations and floer homology of the monodromy map. Sel. Math. (N.S.) 18(3), 473–512 (2012)
    • Murphy, E.: Loose Legendrian Embeddings in High Dimensional Contact Manifolds. ProQuest LLC, Ann Arbor, MI, (2012). Thesis (Ph.D.)–Stanford...
    • Nadler, D.: Arboreal singularities. Geom. Topol. 21(2), 1231–1274 (2017)
    • Seidel, P.: Fukaya categories and Picard-Lefschetz theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich,...
    • Starkston, L.: Arboreal singularities in weinstein skeleta. Sel. Math. (N.S.) 24(5), 4105–4140 (2018)
    • Weinstein, A.: Contact surgery and symplectic handlebodies. Hokkaido Math. J. 20(2), 241–251 (1991)
    • 27. Wu, W.: Exact lagrangians in an-surface singularities. Math. Ann. 359(1–2), 153–168 (2014)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno