Ir al contenido

Documat


How often does a cubic hypersurface have a rational point?

  • Lea Beneish [1] ; Christopher Keyes [2]
    1. [1] University of North Texas

      University of North Texas

      Estados Unidos

    2. [2] King's College London

      King's College London

      Reino Unido

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01079-w
  • Enlaces
  • Resumen
    • A cubic hypersurface in Pn defined over Q is given by the vanishing locus of a cubic form f in n +1 variables. It is conjectured that when n ≥ 4, such cubic hypersurfaces satisfy the Hasse principle. This is now known to hold on average due to recent work of Browning, Le Boudec, and Sawin. Using this result, we determine the proportion of cubic hypersurfaces in Pn, ordered by the height of f , with a rational point for n ≥ 4 explicitly as a product over primes p of rational functions in p. In particular, this proportion is equal to 1 for cubic hypersurfaces in Pn for n ≥ 9; for 100% of cubic hypersurfaces, this recovers a celebrated result of Heath-Brown that non-singular cubic forms in at least 10 variables have rational zeros. In the n = 3 case, we give a precise conjecture for the proportion of cubic surfaces in P3 with a rational point.

  • Referencias bibliográficas
    • Apostol, T.M.: An elementary view of Euler’s summation formula. Am. Math. Mon. 106(5), 409–418 (1999)
    • Beneish, L., Keyes, C.: On the proportion of locally soluble superelliptic curves. Finite Fields Appl. 85, 102128 (2023)
    • Beneish, L., Keyes, C.: Github repository cubic-hypersurfaces. Available at https://github. com/c-keyes/cubic-hypersurfaces, (2024)
    • Bhargava, M.: A positive proportion of plane cubics fail the Hasse principle. Preprint, available at https://arxiv.org/pdf/1402.1131.pdf,...
    • Bhargava, M., Cremona, J., Fisher, T.: The proportion of plane cubic curves over Q that everywhere locally have a point. Int. J. Number Theory...
    • Bhargava, M., Cremona, J., Fisher, T.: The proportion of genus one curves over Q defined by a binary quartic that everywhere locally have...
    • Bhargava, M., Cremona, J., Fisher, T., Gajovi´c, S.: The density of polynomials of degree n over Zp having exactly r roots in Qp. Proc. Lond....
    • Bhargava, M., Cremona, J.E., Fisher, T., Jones, N.G., Keating, J.P.: What is the probability that a random integral quadratic form in n variables...
    • Birch, B.J., Lewis, D.J.: p-adic forms. J. Indian Math. Soc. (N.S.) 23, 11–32 (1959)
    • Bright, M.J., Browning, T.D., Loughran, D.: Failures of weak approximation in families. Compos. Math. 152(7), 1435–1475 (2016)
    • Browning, T.D.: Many cubic surfaces contain rational points. Mathematika 63(3), 818–839 (2017)
    • Browning, T., Le Boudec, P., Sawin, W.: The Hasse principle for random Fano hypersurfaces. Ann. Math. (2) 197(3), 1115–1203 (2023)
    • Cohen, H.: High precision computation of Hardy–Littlewood constants. Preprint, available at https:// oeis.org/A221712/a221712.pdf
    • Colliot-Thélène, J.-L.: Points rationnels sur les fibrations. In Higher dimensional varieties and rational points (Budapest, 2001), volume...
    • Dem’yanov, V.B.: On cubic forms in discretely normed fields. Doklady Akad. Nauk SSSR (N.S.) 74, 889–891 (1950)
    • Fisher, T., Ho, W., Park, J.: Everywhere local solubility for hypersurfaces in products of projective spaces. Res. Number Theory 7(1), 6 (2021)
    • Heath-Brown, D.R.: Cubic forms in ten variables. Proc. London Math. Soc. (3) 47(2), 225–257 (1983)
    • Hirakawa, Y., Kanamura, Y.: How to calculate the proportion of everywhere locally soluble diagonal hypersurfaces. Int. J. Number Theory 17(10),...
    • Hooley, C.: On nonary cubic forms. J. Reine Angew. Math. 386, 32–98 (1988)
    • Kopparty, S., Yekhanin, S.: Detecting rational points on hypersurfaces over finite fields. In TwentyThird Annual IEEE Conference on Computational...
    • Laxton, R.R., Lewis, D.J.: Forms of degrees 7 and 11 over p-adic fields. In Proc. Sympos. Pure Math., Vol. VIII, pages 16–21. Amer. Math....
    • Leep, D.B., Yeomans, C.C.: Quintic forms over p-adic fields. J. Number Theory 57(2), 231–241 (1996)
    • Lewis, D.J.: Cubic homogeneous polynomials over p-adic number fields. Ann. Math. 56(3), 473–478 (1952)
    • Poonen, B., Stoll, M.: A local-global principle for densities. In Topics in number theory (University Park, PA, 1997), volume 467 of Math....
    • Poonen, B., Voloch, J.F.: Random Diophantine equations. In Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), volume...
    • Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.2), 2021. https://www. sagemath.org

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno