Ir al contenido

Documat


Model theory of complex numbers with polynomial functions

  • Benjamin Castle [2] ; Chieu-Minh Tran [1]
    1. [1] National University of Singapore

      National University of Singapore

      Singapur

    2. [2] Department of Mathematics, University of Illinois Urbana Champaign, Champaign, IL, United States
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01086-x
  • Enlaces
  • Resumen
    • Let C be the set of complex numbers, and let P be a collection of complex polynomial maps in several variables. Assuming at least one P ∈ P depends on at least two variables, we classify all possibilities for the structure (C;P) up to definable equivalence. In particular, outside a short list of exceptions, we show that (C;P) always defines + and ×. Our tools include Zilber’s Restricted Trichotomy, as well as the classification of symmetric non-expanding pairs of polynomials over C from arithmetic combinatorics. Along the way, we also give a new condition for a reduct M = (M, ...) of a smooth curve over an algebraically closed field to recover all constructible subsets of powers of M.

  • Referencias bibliográficas
    • Castle, B.: Zilber’s restricted trichotomy in characteristic zero. J. Amer. Math. Soc. 37, 1041–1120 (2024)
    • Castle, B.: Hasson, A: Very ampleness in strongly minimal sets. Model theory. 3(2), 213–258 (2024)
    • Chernikov, A., Peterzil, Y., Starchenko, S.: Model-theoretic Elekes-Szabó for stable and o-minimal hypergraphs. Duke Math. J. 173(3), 419–512...
    • Hrushovski, U., Pillay, A.: Weakly normal groups, Logic colloquium ’85 (Orsay, 1985), Stud. Logic Found. Math., vol. 122, North-Holland, Amsterdam,...
    • Hrushovski, E: Locally modular regular types, Classification theory (Chicago, IL, 1985), Lecture Notes in Math., vol. 1292, Springer, Berlin,...
    • Hasson, A.: Sustretov, D: Incidence systems on cartesian powers of algebraic curves. J. Eur. Math. Soc. 27(3), 1055–1105 (2025)
    • Jing, Y., Roy, S., Tran, C.-M.: Semialgebraic methods and generalized sum-product phenomena, Discrete Anal., Paper No. 18, 23 (2022)
    • Loveys, J.: Linear reducts of the complex field. Notre Dame J. Formal Logic 45(3), 161–190 (2004)
    • Gary, A.: Martin, Definability in reducts of algebraically closed fields. J. Symbolic Logic 53(1), 188– 199 (1988)
    • Marker, D., Pillay, A.: Reducts of (C, +, ·) which contain +. J. Symbolic Logic 55(3), 1243–1251 (1990)
    • Rabinovich, E.D.: Definability of a field in sufficiently rich incidence systems, QMW Maths Notes, vol. 14, Queen Mary and Westfield College,...
    • Rabinovich, E., Zilber, B.: Additive reducts of algebraically closed fields, manuscript, (1988)
    • Shafarevich, I.R.: Basic algebraic geometry, vol. 1, third ed Springer, Heidelberg (2013). (Varieties in projective space)
    • Silverman, J.H.: The arithmetic of elliptic curves, Graduate Texts in Mathematics. Springer, New York (2013)
    • van den Dries, L.P.D.: Weil’s group chunk theorem: a topological setting. Illinois J. Math. 34(1), 127–139 (1990)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno