Ir al contenido

Documat


Operations on the de Rham cohomology of Poisson and Jacobi manifolds

  • Ai Guan [1] ; Fernando Muro [1] Árbol académico
    1. [1] Universidad de Sevilla

      Universidad de Sevilla

      Sevilla, España

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01087-w
  • Enlaces
  • Resumen
    • We prove that the (homotopy) hypercommutative algebra structure on the de Rham cohomology of a Poisson or Jacobi manifold defined by several authors is (homotopically) trivial, i.e. it reduces to the underlying (homotopy) commutative algebra structure. We do so by showing that the DG operads which codify the algebraic structure on the de Rham complex of Poisson and Jacobi manifolds, generated by the exterior product and the interior products with the structure polyvector fields, are quasi-isomorphic to the commutative suboperad. We proceed similarly with the commutative BV∞-algebra structure on the de Rham complex of a generalized Poisson supermanifold.

  • Referencias bibliográficas
    • Akman, F., Ionescu, L.M.: Higher Derived Brackets and Deformation Theory I. Journal of Homotopy and Related Structures 3(1), 385–403 (2008)
    • Akman, F.: On Some Generalizations of Batalin-Vilkovisky Algebras. J. Pure Appl. Algebra 120(2), 105–141 (1997). https://doi.org/10.1016/S0022-4049(96)00036-9
    • Barannikov, S., Kontsevich, M.: Frobenius Manifolds and Formality of Lie Algebras of Polyvector Fields. IMRN. International Mathematics Research...
    • Berglund, A.: Homological perturbation theory for algebras over operads. Algebraic Geom. Topology 14(5), 2511–2548 (2014). https://doi.org/10.2140/agt.2014.14.2511
    • Braun, C., Lazarev, A.: Homotopy BV Algebras in Poisson Geometry. Transactions of the Moscow Mathematical Society 74, 217–227 (2013). https://doi.org/10.1090/S0077-1554-2014-00216-8
    • Cartier, P.: Some Fundamental Techniques in the Theory of Integrable Systems. Lectures on Integrable Systems (Sophia-Antipolis, 1991). World...
    • Cirici, J., Horel, G.: Formality of hypercommutative algebras of K ä hler and Calabi-Yau manifolds. Feb. 24, (2023). https://doi.org/10.48550/arXiv.2302.08492arxiv:2302.08492...
    • Campos, R., Merkulov, S., Willwacher, T.: The Frobenius Properad Is Koszul. Duke Math. J. 165(15), 2921–2989 (2016). https://doi.org/10.1215/00127094-3645116
    • Dotsenko, V., Shadrin, S., Tamaroff, P.: Generalized Cohomological Field Theories in the Higher Order Formalism. Commun. Math. Phys. 399(3),...
    • Dotsenko, V., Shadrin, S., Vallette, B.: Givental Group Action on Topological Field Theories and Homotopy Batalin-Vilkovisky Algebras. Adv....
    • Dotsenko, V., Shadrin, S., Vallette, B.: De Rham Cohomology and Homotopy Frobenius Manifolds. J. Eur. Math. Soc. 17(3), 535–547 (2015). https://doi.org/10.4171/JEMS/510
    • Eilenberg, S., Lane, S.M.: On the groups H(5, n). I. Ann. Math. (2) 58, 55–106 (1953). https://doi. org/10.2307/1969820
    • Eilenberg, S., Lane, S.M.: On the groups H(5, n). II. Methods of computation. Annals of Mathematics (2) 60, 49–139 (1954). https://doi.org/10.2307/1969702
    • Gálvez-Carrillo, I., Tonks, A., Vallette, B.: Homotopy Batalin-Vilkovisky Algebras. Journal of Noncommutative Geometry 6(3), 539–602 (2012)....
    • Ginzburg, V., Kapranov, M.: Koszul Duality for Operads. Duke Math. J. 76(1), 203–272 (1994). https:// doi.org/10.1215/S0012-7094-94-07608-4
    • Grothendieck, A.: Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie. Publications...
    • Gugenheim, V.K.A.M.: On a Perturbation Theory for the Homology of the Loop-Space. J. Pure Appl. Algebra 25(2), 197–205 (1982). https://doi.org/10.1016/0022-4049(82)90036-6
    • Hinich, V.: Erratum to Homological Algebra of Homotopy Algebras. Oct. 12, (2003). https://doi.org/ 10.48550/arXiv.math/0309453, arXiv:math/0309453...
    • Hinich, V.: Homological Algebra of Homotopy Algebras. Comm. Algebra 25(10), 3291–3323 (1997). https://doi.org/10.1080/00927879708826055
    • Hackney, P., Robertson, M., Yau, D.: Relative Left Properness of Colored Operads. Algebraic & Geometric Topology 16(5), 2691–2714 (2016)....
    • Voronov, T., Khudaverdian, H.M.: Higher Poisson Brackets and Differential Forms. AIP Conf. Proc. 1079(1), 203–215 (2008). https://doi.org/10.1063/1.3043861
    • Katzarkov, L., Kontsevich, M., Pantev, T.: Hodge Theoretic Aspects of Mirror Symmetry. Proceedings of Symposia in Pure Mathematics. Ed. by...
    • Khoroshkin, A., Markarian, N., Shadrin, S.: Hypercommutative Operad as a Homotopy Quotient of BV. Commun. Math. Phys. 322(3), 697–729 (2013)....
    • Koszul, J.-L.: Crochet de Schouten-Nijenhuis et Cohomologie. Ast é risque. Numéro Hors Série. pp. 257–271 (1985)
    • Kravchenko, O.: Deformations of Batalin–Vilkovisky algebras. Poisson geometry. Stanisław Zakrzewski in memoriam. Warszawa: Polish Academy...
    • Lambe, L.A.: Resolutions Which Split off of the Bar Construction. J. Pure Appl. Algebra 84(3), 311–329 (1993) 10/cwbbdm
    • Losev, A., Shadrin, S.: From Zwiebach Invariants to Getzler Relation. Communications in Mathematical Physics 2007 271:3 271.3 (Mar. 2, 2007),...
    • Lambe, L., Stasheff, J.: Applications of Perturbation Theory to Iterated Fibrations. Manuscripta Math. 58(3), 363–376 (1987). https://doi.org/10.1007/BF01165893
    • Loday, J.-L., Vallette, B.: Algebraic Operads. Vol. 346. Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical...
    • Manin, Y. I.: Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces. Vol. 47. American Mathematical Society Colloquium Publications....
    • Park, J.-S.: Semi-Classical Quantum Fields Theories and Frobenius Manifolds. Lett. Math. Phys. 81(1), 41–59 (2007). https://doi.org/10.1007/s11005-007-0165-z
    • Sharygin, G., Talalaev, D.: On the Lie-formality of Poisson Manifolds. Journal of K-Theory. K-Theory and its Applications in Algebra, Geometry,...
    • Tamarkin, D., Tsygan, B.: Noncommutative Differential Calculus, Homotopy BV Algebras and Formality Conjectures. Feb. 15, 2000. https://doi.org/10.48550/arXiv.math/0002116arXiv:abs/math/0002116...
    • Drummond-Cole, G.C., Vallette, B.: The Minimal Model for the Batalin-Vilkovisky Operad. Sel. Math. New Ser. 19(1), 1–47 (2013). https://doi.org/10.1007/s00029-012-0098-y
    • Bashkirov, D., Voronov, A.A.: The BV formalism for L∞-algebras. Journal of Homotopy and Related Structures 12(2), 305–327 (2017). https://doi.org/10.1007/s40062-016-0129-z

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno