Ir al contenido

Documat


The cycle class of the supersingular locus of principally polarized abelian varieties

  • Gerard van der Geer [1] ; Shushi Harashita [2]
    1. [1] University of Amsterdam

      University of Amsterdam

      Países Bajos

    2. [2] Yokohama National University

      Yokohama National University

      Naka Ku, Japón

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01095-w
  • Enlaces
  • Resumen
    • We prove a formula for the cycle class of the supersingular locus in the Chow ring with rational coefficients of the moduli space of principally polarized abelian varieties of dimension g in characteristic p. This formula determines this class as a monomial in the Chern classes of the Hodge bundle up to a factor that is a polynomial in p. This factor is known for g ≤ 3. We also determine the factor for g = 4.

  • Referencias bibliográficas
    • Berthelot, P., Breen, L., Messing, W.: Théorie de Dieudonné cristalline II. Lecture Notes in Mathematics, vol. 930. Springer-Verlag (1982)
    • Ekedahl, T.: Foliations and inseparable morphisms. In: Algebraic geometry. Bowdoin, 1985, pp. 139– 149. Amer. Math. Soc, Providence, RI (1987)
    • Ekedahl, T.: On supersingular curves and abelian varieties. Math. Scand. 60, 151–178 (1987)
    • Ekedahl, T., van der Geer, G.: Cycle classes of the E-O stratification on the moduli of abelian varieties. In: Algebra, Arithmetic, and Geometry,...
    • Esnault, H., Viehweg, E.: Chern classes of gauss-manin bundles of weight Chern classes of GaussManin bundles of weight 1 vanish. K-Theory...
    • Faltings, G., Chai, C.-L.: Degeneration of abelian varieties. Ergebnisse der Mathematik, vol. 22. Springer Verlag (1990)
    • Fulton, W.: Intersection Theory, 2nd edn. Springer Verlag (1998)
    • Fulton, W., Pragacz, P.: Schubert varieties and degeneracy loci. Lecture Notes in Mathematics, vol. 1689. Springer Verlag (1998)
    • Gan, W.T., Hanke, J., Yu, J.-K.: On an exact mass formula of shimura. Duke Math. J. 107, 103–133 (2001)
    • van der Geer, G.: Cycles on the moduli space of abelian varieties. In: Moduli of Curves and Abelian Varieties. 65–89. (The Dutch Intercity...
    • van der Geer, G.: The Chow ring of the moduli space of abelian threefolds. J. Algebraic Geometry 7, 753–770 (1998). See also Corrigendum...
    • Harashita, S.: The a-number stratification on the moduli space of supersingular abelian varieties. J. Pure Appl. Algebra 193, 163–191 (2004)
    • Hashimoto, K., Ibukiyama, T.: On class numbers of positive definite binary quaternion hermitian forms. J. Fac. Sci. University Tokyo IA 27,...
    • Hashimoto, K., Ibukiyama, T.: On class numbers of positive definite binary quaternion hermitian forms. J. Fac. Sci. University Tokyo II 28,...
    • Hashimoto, K., Ibukiyama, T.: On class numbers of positive definite binary quaternion hermitian forms. J. Fac. Sci. University Tokyo III 30,...
    • Ibukiyama, T., Katsura, T., Oort, F.: Supersingular curves of genus two and class numbers. Compositio Math. 57, 127–152 (1986)
    • Karemaker, V., Yobuko, F., Yu, C.-F.: Mass formula and Oort’s conjecture for supersingular abelian threefolds. Adv. Math. 386, 107812, 52...
    • Katsura, T.: Lefschetz pencils on a certain hypersurface in positive characteristic. Higher dimensional algebraic geometry— in honour of Professor...
    • Katsura, T., Oort, F.: Families of supersingular abelian surfaces. Compositio Math. 62, 107–167 (1987)
    • Katsura, T., Oort, F.: Supersingular abelian varieties of dimension two or three and class numbers. In: Algebraic Geometry, Sendai, 1985....
    • Li, K.-Z.: Classification of supersingular abelian varieties. Math. Annalen 283, 331–351 (1989)
    • Li, K.-Z., Oort, F.: Moduli of supersingular abelian varieties. Lecture Notes in Mathematics, vol. 1680. Springer Verlag (1998)
    • Norman, P.: An algorithm for computing local moduli of abelian varieties. Ann. Math. 2(101), 499–509 (1975)
    • Oda, T., Oort, F.: Supersingular abelian varieties. In: Intern. Symposium on Algebraic Geometry, Kyoto pp. 595–621 (1977)
    • Oort, F.: Subvarieties of moduli spaces. Inventiones Math. 24, 95–119 (1974)
    • Oort, F.: A stratification of a moduli space of abelian varieties. In: Faber, C., van der Geer, G., Oort, F. (eds) Moduli of Abelian varieties...
    • Oort, F.: Newton polygons and formal groups. Ann. Math. 152, 183–206 (2000)
    • Yu, C.-F.: The supersingular loci and mass formulas on siegel modular varieties. Doc. Math. 11, 449–468 (2006)
    • Zink, Th.: The display of a formal p-divisible group. In: Cohomologies p-adiques et applications arithmétiques (I). Berthelot et al. editors....
    • Zink, Th.: On the slope filtration. Duke Math. J. 109, 79–95 (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno