Ir al contenido

Documat


On topological groups with a weak q-point

  • Lin, Hai-Hua [1] ; Xie, Li-Hong [1]
    1. [1] Wuyi University
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 26, Nº. 2, 2025, págs. 839-851
  • Idioma: inglés
  • DOI: 10.4995/agt.2025.23620
  • Enlaces
  • Resumen
    • In this article, firstly, we introduce the concepts of weak q-spaces and weak sq-spaces. Some properties of these spaces are discussed. Secondly, we study weak q-spaces and weak sq-spaces in topological groups in terms of preimages of submetrizable spaces. We show that a topological group G is a weak q-space (resp., weak sq-space) if and only if it is an open countable-compact (resp., sequential-compact) preimage of a submetrizable space.Finally, we give some characterizations of weakly feathered, weak q-spaces and weak sq-spaces in topological groups in coset spaces as follows:(1) Let H be a closed neutral subgroup of a topological group G. Then G/H is weakly feathered if and only if G/H is an open perfect preimage of a submetrizable space.(2) Let H be a closed neutral subgroup of a topological group G. Then G/H is a weak q-space (resp., weak sq-space) if and only if G/H is an open countable-compact (resp., sequential-compact) preimage of a submetrizable space.

  • Referencias bibliográficas
    • A. V. Arhangel'skii, Bicompact sets and the topology of spaces, Trans. Moscow Math. Soc. 13 (1965), 1-62.
    • A. V. Arhangel'skii, Relations among the invariants of topological groups and their subspaces, Russian Math. Surveys 35 (1980), 1-23....
    • A. V. Arhangel'skii and M. G. Tkachenko, Topological Groups and Related Structures, Atlantis Studies in Mathematics, vol. 1, Atlantis...
    • J. W. Chen and B. Zhao, Coset spaces with certain q-sequences, Topology Appl. 361 (2025), 109192. https://doi.org/10.1016/j.topol.2024.109192
    • R. Engelking, General Topology, Sigma Series in Pure Mathematics, Heldermann, Berlin, 1989.
    • S. Lin and Z. Yun, Generalized Metric Spaces and Mappings, Atlantis Studies in Mathematics, vol. 6, Atlantis Press, Paris, 2016. https://doi.org/10.2991/978-94-6239-216-8
    • S. Lin, L. H. Xie, and D. B. Chen, Some generalized countably compact properties in topological groups, Topology Appl. 339 (2023), 108705....
    • X. W. Ling, Metrizability of quotient spaces of topological groups, Postdoctoral Research Report, Shaanxi Normal University, Xi'an, 2024.
    • E. Michael, A quintuple quotient quest, Gen. Topol. Appl. 2, no. 1 (1972), 91-138. https://doi.org/10.1016/0016-660X(72)90040-2
    • K. Morita, Product of normal space with metric spaces, Math. Ann. 154 (1966), 365-382. https://doi.org/10.1007/BF01362570
    • B. A. Pasynkov, Almost metrizable topological groups (in Russian), Dokl. Akad. Nauk SSSR 161 (1965), 281-284.
    • L. X. Peng and Y. Liu, Topological groups with a (strongly) q-point, Houston J. Math. 47, no. 2 (2021), 499-516.
    • J. Poncet, Une classe d'espaces homogenes possedant une mesure invariante, C. R. Acad. Sci. Paris 238 (1954), 553-554.
    • M. G. Tkachenko, Compactness type properties in topological groups, Czechoslovak Math. J. 38, no. 2 (1988), 324-341. https://doi.org/10.21136/CMJ.1988.102228
    • I. A. Vaistein, On closed mappings of metric spaces (in Russian), Dokl. Akad. Nauk SSSR 57 (1947), 319-321.
    • J. E. Vaughan, Countably compact and sequentially compact spaces, in: Handbook of Set-Theoretic Topology (1984), 569-602. https://doi.org/10.1016/B978-0-444-86580-9.50015-X

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno