Ir al contenido

Documat


On the modular metric completion

  • Olela-Otafudu, Olivier [1] ; Phawe, Tlotlo Odacious [2]
    1. [1] University of Limpopo

      University of Limpopo

      Polokwane, Sudáfrica

    2. [2] North-West University

      North-West University

      Tlokwe City Council, Sudáfrica

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 26, Nº. 2, 2025, págs. 827-838
  • Idioma: inglés
  • DOI: 10.4995/agt.2025.23431
  • Enlaces
  • Resumen
    • The purpose of this paper is to present the construction of the completion of a set equipped with a modular metric that we call the modular completion. We show for instance that any set equipped with a modular metric has a modular completion. Moreover, it turns out that the modular completion is unique up to isometry.

  • Referencias bibliográficas
    • V. Anbukkarasi, M. Marudai, and R. Theivaraman, Best proximity points for contractive mappings in generalized modular metric spaces, Korean...
    • V. V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Anal. 72 (2010), 1-14. https://doi.org/10.1016/j.na.2009.04.057
    • V. V. Chistyakov, Metric modular spaces: Theory and applications, SpringerBriefs in Mathematics, Springer, Switzerland, 2015. https://doi.org/10.1007/978-3-319-25283-4
    • N. V. Dung and V. T. L. Hang, On the completion of b-metric spaces, Bull. Aust. Math. Soc. 98 (2018), 298-304. https://doi.org/10.1017/S0004972718000394
    • M. E. Ege and C. Alaca, Some results for modular b-metric spaces and an application to system of linear equations. Azerb. J. Math. 8 (2018),...
    • A. George and P. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy Math. 3 (1995), 933-940. https://doi.org/10.1016/0165-0114(94)90162-7
    • V. Gregori and S. Romaguera, On completion of fuzzy metric spaces, Fuzzy Sets Syst. 130 (2002), 399-404. https://doi.org/10.1016/S0165-0114(02)00115-X
    • Z. Mushaandja and O. Olela-Otafudu, On the modular metric topology, Topology Appl. (in press).
    • O. Olela Otafudu and T. O. Phawe, On one-local retract in modular metrics, Categ. Gen. Algebr. Struct. Appl. 20 (2024), 201-219.
    • O. Olela Otafudu and K. Sebogodi, On w-Isbell-convexity, Appl. Gen. Topol. 23 (2022), 91-105. https://doi.org/10.4995/agt.2022.15739
    • S. Romaguera, The relationship between modular metrics and fuzzy metrics revisited, Constr. Math. Anal. 7 (2024), 90-97. https://doi.org/10.33205/cma.1502096
    • S. Romaguera, On modular b-metrics, Symmetry 16 (2024), 1333. https://doi.org/10.3390/sym16101333

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno