Ir al contenido

Documat


A necessary and sufficient condition for best proximity point in complete metric spaces with applications to analytic functions

  • Pant, Sumit [1] ; Kumar Singh, Narendra [2] ; Thayat, Suraj Singh [2]
    1. [1] Govt. G.N.A. P.G. College
    2. [2] M.B. Govt. P.G. College
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 26, Nº. 2, 2025, págs. 815-825
  • Idioma: inglés
  • DOI: 10.4995/agt.2025.23324
  • Enlaces
  • Resumen
    • This paper proposes a best proximity point theorem for non-self mappings in complete metric spaces, providing necessary and sufficient conditions for their existence. A fixed point theorem is introduced as a corollary and these results are applied to analytic functions of a complex variable, showcasing their relevance to broader mathematical and applied contexts.

  • Referencias bibliográficas
    • M. Al-Thagafi, and N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal. 70, no. 10 (2009), 3665-3671....
    • M. Aslantaş, Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces, Commun. Fac. Sci. Univ. Ankara Ser. A1 Math....
    • S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3, no. 1 (1922), 133-181....
    • S. S. Basha, Extensions of Banach's contraction principle, Numer. Funct. Anal. Optim. 31, no. 5 (2010), 569-576. https://doi.org/10.1080/01630563.2010.485713
    • S. S. Basha, Best proximity points: global optimal approximate solutions, J. Global Optim. 49, no. 1 (2011), 15-21. https://doi.org/10.1007/s10898-009-9521-0
    • S. S. Basha, Some best approximation theorems and best proximity point theorems, Acta Sci. Math. (Szeged) (2023), 1-12. https://doi.org/10.1007/s44146-023-00065-y
    • S. S. Basha, and N. Shahzad, Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl. 2012 (2012), 1-9....
    • V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum 9 (2004), 43-54. https://doi.org/10.1155/S1687182004311058
    • D. W. Boyd, and J. S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20, no. 2 (1969), 458-464. https://doi.org/10.2307/2035677
    • J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251. https://doi.org/10.1090/S0002-9947-1976-0394329-4
    • J. Caristi, and W. A. Kirk, Geometric fixed point theory and inwardness conditions, in: The Geometry of Metric and Linear Spaces, Proc. Conf.,...
    • N. Chandra, B. Joshi, and M. C. Joshi, Generalized fixed point theorems on metric spaces, Math. Morav. 26, no. 2 (2022), 85-101. https://doi.org/10.5937/MatMor2202085C
    • S. K. Chatterjea, Fixed-point theorems, Dokl. Bulg. Akad. Nauk 25, no. 6 (1972), 727-730.
    • L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45, no. 2 (1974), 267-273. https://doi.org/10.1090/S0002-9939-1974-0356011-2
    • C. Di Bari, T. Suzuki, and C. Vetro, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal. 69, no. 11 (2008), 3790-3794....
    • M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12, no. 1 (1961), 7-10. https://doi.org/10.1090/S0002-9939-1961-0120625-6
    • A. A. Eldred, and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323, no. 2 (2006), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081
    • M. Gabeleh, Best proximity point theorems via proximal non-self mappings, J. Optim. Theory Appl. 164, no. 2 (2015), 565-576. https://doi.org/10.1007/s10957-014-0585-8
    • D. Gopal, P. Kumam, and M. Abbas, Background and recent developments of metric fixed point theory, Chapm. & Hall/CRC (2017). https://doi.org/10.1201/9781351243377
    • M. Jleli, and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), 1-8. https://doi.org/10.1186/1029-242X-2014-1
    • R. Kannan, Some results on fixed points-II, Amer. Math. Monthly 76, no. 4 (1969), 405-408. https://doi.org/10.1080/00029890.1969.12000228
    • S. Karpagam, and S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory Appl. 2009 (2009), 1-9....
    • E. Keeler, and A. Meir, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329. https://doi.org/10.1016/0022-247X(69)90031-6
    • F. Khojasteh, S. Shukla, and S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat 29, no. 6 (2015),...
    • W. A. Kirk, and B. Sims, Handbook of metric fixed point theory, Springer Dordrecht (2002). https://doi.org/10.1007/978-94-017-1748-9
    • E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13, no. 3 (1962), 459-465. https://doi.org/10.1090/S0002-9939-1962-0148046-1
    • B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290. https://doi.org/10.1090/S0002-9947-1977-0433430-4
    • D. Sarkhel, Banach's fixed point theorem implies Kannan's, Bull. Cal. Math. Soc. 91, no. 2 (1999), 143-144.
    • N. K. Singh, and S. Pant, Generalization of Kannan results for metric interval space without space completeness and application to obtain...
    • P. Subrahmanyam, Remarks on some fixed point theorems related to Banach's contraction principle, J. Math. Phys. Sci. 8 (1974), 445-457.
    • T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253, no. 2 (2001), 440-458. https://doi.org/10.1006/jmaa.2000.7151
    • T. Suzuki, Several fixed point theorems concerning φ-distance, Fixed Point Theory Appl., 2004 (2004), 1-15. https://doi.org/10.1155/S168718200431003X
    • T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136, no. 5 (2008), 1861-1869....
    • D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 1-6. https://doi.org/10.1186/1687-1812-2012-94
    • M. Yadav, B. Thakur, and A. Sharma, Best proximity points for generalized proximity contraction in complete metric spaces, Adv. Fixed Point...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno