Ir al contenido

Documat


Zadeh’s extension of a strong sensitive semiflow

  • Fernández, Manuel [1] ; Jardón, Daniel [1] ; Sánchez, Iván [2]
    1. [1] Universidad Autónoma de la Ciudad de México

      Universidad Autónoma de la Ciudad de México

      México

    2. [2] Universidad Autónoma Metropolitana

      Universidad Autónoma Metropolitana

      México

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 26, Nº. 2, 2025, págs. 785-797
  • Idioma: inglés
  • DOI: 10.4995/agt.2025.23085
  • Enlaces
  • Resumen
    • For a given metric space X, the symbol ℱ(X) denotes the family of all normal upper semicontinuous fuzzy sets on X with compact support. A semiflow is a continuous function f:T×X → X, where T is an abelian topological monoid. We study when f^:T×ℱ(X) → ℱ(X) is strongly sensitive, multi-sensitive or positive Lyapunov stable, where f^ is the Zadeh's extension of the semiflow f and ℱ(X) is endowed with level-wise and Skorokhod metrics.

       

  • Referencias bibliográficas
    • A. El Allaoui, S. Melliani and L. Saadia, Stability of fuzzy dynamical systems via Lyapunov functions, International Journal of Differential...
    • J. Banks, Chaos for induced hyperspace maps, Chaos, Solitons and Fractals 25 (2005), 681-685. https://doi.org/10.1016/j.chaos.2004.11.089
    • L. Barreira and C. Valls, Dynamical Systems. An Introduction, Springer-Verlag London, 2013. https://doi.org/10.1007/978-1-4471-4835-7
    • G. Beer, Topologies on Closed and Closed Convex Sets, Springer Dordrecht, Second edition, 1993. https://doi.org/10.1007/978-94-015-8149-3
    • L. Carvalho, R. Carlos and W. Alexander, First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics: Theory and Applications,...
    • G. Edgar, Measure, Topology, and Fractal Geometry, Springer, 2008. https://doi.org/10.1007/978-0-387-74749-1
    • Y. H. Goo and J. S. Park, On the continuity of the Zadeh extensions, Journal of the Chungcheong Mathematical Society 20, no. 4 (2007), 525-533.
    • L. He, Y. Gao and F. Yang, Some dynamical properties of continuous semi-flows having topological transitivity, Chaos, Solitons and Fractals...
    • D. Jardin and I. Sanchez, Sensitivity and strong sensitivity on induced dynamical systems, Iranian Journal of Fuzzy Systems 18, no. 4 (2021),...
    • D. Jardin, I. Sanchez and M. Sanchis, Some questions about Zadeh's extension on metric spaces, Fuzzy Sets Syst. 379 (2020), 115-124. https://doi.org/10.1016/j.fss.2018.10.019
    • S. Y. Joo and Y. K. Kim, The Skorokhod topology on space of fuzzy numbers, Fuzzy Sets Syst. 111 (2000), 497-501. https://doi.org/10.1016/S0165-0114(98)00185-7
    • P. E. Kloeden, Fuzzy dynamical systems, Fuzzy Sets Syst. 7 (1982), 275-296. https://doi.org/10.1016/0165-0114(82)90056-2
    • J. Kupka, On Devaney chaotic induced fuzzy and set-valued dynamical systems, Fuzzy Sets Syst. 177 (2011), 34-44. https://doi.org/10.1016/j.fss.2011.04.006
    • C. Ma, P. Zhu and T. Lu, Some chaotic properties of fuzzified dynamical systems, Springer Plus 5 (2016), 640. https://doi.org/10.1186/s40064-016-2297-z
    • A. Miller, A note about various types of sensitivity in general semiflows, Appl. Gen. Topol. 19 (2018), 281-289. https://doi.org/10.4995/agt.2018.9943
    • A. Miller, Weak mixing in general semiflows implies multi-sensitivity, but not thick sensitivity, J. Nonlinear Sci. Appl. 12 (2019), 120-133....
    • H. Roman-Flores and Y. Chalco-Cano, Robinson's chaos in set-valued discrete systems, Chaos, Solitons and Fractals 25 (2005), 33-42. https://doi.org/10.1016/j.chaos.2004.11.006
    • H. Roman-Flores and Y. Chalco-Cano, Some chaotic properties of Zadeh's extensions, Chaos, Solitons and Fractals 35 (2008), 452-459. https://doi.org/10.1016/j.chaos.2006.05.036
    • P. Sharma and A. Nagar, Inducing sensitivity on hyperspaces, Topology Appl. 157 (2010), 2052-2058. https://doi.org/10.1016/j.topol.2010.05.002
    • T. K. Subrahmonian Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity 20 (2007), 2115-2126. https://doi.org/10.1088/0951-7715/20/9/006
    • K. Wicks, Fractals and Hyperspaces, Lectures notes in Mathematics. Springer-Verlag. Germany, 1991. https://doi.org/10.1007/BFb0089156
    • X. Wu, X. Zhang and G. Chen, Answers to some questions about Zadeh's extension principle on metric spaces, Fuzzy Sets Syst. 387 (2020),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno