Ir al contenido

Documat


Some remarks on cardinal properties of topological spaces

  • Jureczko, Joanna [1]
    1. [1] Wrocław University of Science and Technology
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 26, Nº. 2, 2025, págs. 751-761
  • Idioma: inglés
  • DOI: 10.4995/agt.2025.22908
  • Enlaces
  • Resumen
    •  The aim of this paper is to present new proofs of selected inequalities between cardinal invariants. The novelty relies on the application of some theorems on strong sequences. This new look for proofs of known theorems shows hope for proving new inequalities between invariants

  • Referencias bibliográficas
    • A. Archangel'skii, The power of compacta with the first axiom of countability, Dokl. Akad. Nauk. S.S.S.R. 187 (1969), 967-968.
    • M. Bell, J. Ginsburg, and G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79 (1978),...
    • A. Bella, N. Carlson, and S. Spadaro, Cardinal inequalities involving the Hausdorff pseudocharacter, Rev. R. Acad. Cienc. Exactas Fís. Nat....
    • A. Bella, and S. Spadaro, A common extension of Archangelskii's theorem and the Hajnal-Juhasz inequality, Canad. Math. Bull. 63, no. 1...
    • A. Bella, and S. Spadaro, Infinite games and cardinal properties of topological spaces, Houston J. Math. 41, no. 3 (2015), 1063-1077.
    • B. A. Efimov, Dyadic bicompacta, Trudy Mosk. Mat. Obvs sc. 14 (1965), 211-247.
    • R. Engeling, General Topology, Heldermann-Verlag, Berlin (1989).
    • R. E. Hodel, Cardinal Functions I, in: Handbook of set-theoretical topology, K. Kunen, J. E. Vaughan (eds.), Elsevier Science Publishers B.V....
    • R. E. Hodel, Combinatorial set theory and cardinal function inequalities, Proc. Amer. Math. Soc. 111, no. 2 (1991), 567-575. https://doi.org/10.1090/S0002-9939-1991-1039531-7
    • I. Juhasz, Cardinal functions in topology, Mathematical Centre Tracts 34, Mathematisch Centrum, Amsterdam, 1975.
    • I. Juhasz, On two problems of A. V. Archangel'skii, General Topology and Appl. 2 (1972), 151-156. https://doi.org/10.1016/0016-660X(72)90002-5
    • I. Juhasz, Cardinal functions in topology - ten years later. 2nd edn. Mathematical Centre Tracts, vol. 123. Mathematisch Centrum, Amsterdam...
    • J. Jureczko, Strong sequences and partition relations, Ann. Univ. Pedagog Crac. Stud. Math. 16 (2017), 51-59. https://doi.org/10.1515/aupcsm-2017-0004
    • J. Jureczko, Further remarks on cardinal properties of topological spaces, in preparation.
    • J. Jureczko, Topological games and strong sequences, in preparation.
    • J. Jureczko, On inequalities among some invariants, Mathematica Aeterna 6, no. 1 (2016), 87-98.
    • J. Jureczko, Strong sequences and independent sets, Mathematica Aeterna 6, no. 2 (2016), 141-152.
    • J. Jureczko, kappa-strong sequences and the existence of generalized independent families, Open Math. 15, no. 1 (2017), 1277-1282. https://doi.org/10.1515/math-2017-0108
    • J. Jureczko, Some remarks on polarized partition relations, Bull. Iranian Math. Soc. 49, no. 3 (2023), 38. https://doi.org/10.1007/s41980-023-00782-8
    • K. Kunen, Set Theory, Studies in Logic, vol. 34. College Publications, London (2011).
    • S. Shelah, On some problems in general topology, Contemporary Math. 192 (1996), 91-101. https://doi.org/10.1090/conm/192/02352
    • M. Turzanski, Strong sequences and the weight of regular spaces, Commentationes Mathematicae Universitatis Carolinae 31, no. 3 (1992), 557-561.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno