Ir al contenido

Documat


Metrization of idempotent semiring of topological rings

  • Maity, Sunil Kumar [1] ; Adak, Gopal [1]
    1. [1] University of Calcutta

      University of Calcutta

      India

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 26, Nº. 2, 2025, págs. 725-749
  • Idioma: inglés
  • DOI: 10.4995/agt.2025.22854
  • Enlaces
  • Resumen
    • In this paper, we have introduced natural H+ - pseudovaluation and  H+ -norm on a completely regular semiring making it a topological completely regular (algebraic) semiring and established some necessary and sufficient conditions of metrizability of a topological completely regular (algebraic) semiring. We have generalized the Birkhoff-Kakutani theorem on a first countable topological completely regular (algebraic) semiring. Also we have established that a topological completely regular (algebraic) semiring is metrizable if and only if it is an M- space and its set of additive idempotents is a metrizable Gδ - set in S. Finally we have studied the completion of a b- lattice of topological rings in its uniformity structure.

       

  • Referencias bibliográficas
    • A. V. Arkhangelski, Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33, no. 6 (1978), 33-96....
    • T. Banakh, O. Gutik, P. Oles, and A. Ravski, Metrizability of Clifford topological Semigroups, Semigroup Forum 84 (2012), 301-307. https://doi.org/10.1007/s00233-011-9341-7
    • N. Bourbaki, Elements of Mathematics, Algebra 1, Harmann, Paris, 1973.
    • N. Bourbaki, Elements of Mathematics : General Topology, Chapters 1-4, Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-61701-0
    • R. Debnath, and A. K. Bhuniya, On the lattice of congruences on completely regular semirings, Quasigroups and Related Systems 25 (2017), 211-220.
    • G. Gruenhage, Handbook of set-theoretic topology : Generalized metric space, Chapter - 10, North Holland Amsterdam (1984), 423-501. https://doi.org/10.1016/B978-0-444-86580-9.50013-6
    • R. J. Koch, J. A. Hildebrant, and J. H. Carruth, The Theory of Topological Semigroups, Marcel Dekker, Inc., New York (1983).
    • Z. S. Lipkina, Locally bicompact rings without zero divisors, Akad. Nauk SSSR Ser. Mat 31 (1967), 1239-1262.
    • S. K. Maity, The congruence Y* on completely regular semirings, Quasigroups and Related Systems 25 (2017), 279-288.
    • S. K. Maity, and G. Adak, Topological semirings which are union of topological rings, Topology Proceedings 65 (2025), 1-33.
    • M. K. Sen, S. K. Maity, and K. P. Shum, On completely regular semirings, Bull. Cal. Math. Soc. 98, no. 4 (2006), 319-328.
    • M. Ursul, Topological Rings Satisfying Compactness Conditions, 549 (Mathematics and Its Applications), Springer Science+Business Media,...
    • S. Warner, Normability of certain topological rings, Proc. Amer. Math. Soc. 33 (1972), 423-427. https://doi.org/10.1090/S0002-9939-1972-0296114-2
    • S. Warner, Topological rings, North Holland Mathematics Studies 178, 1993.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno