Ir al contenido

Documat


Sub-shadowing and specification through pointwise dynamics

  • Das, Pramod Kumar [1] ; Khan, Abdul Gaffar [2]
    1. [1] GITAM University

      GITAM University

      India

    2. [2] University of Delhi

      University of Delhi

      India

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 26, Nº. 2, 2025, págs. 691-702
  • Idioma: inglés
  • DOI: 10.4995/agt.2025.22742
  • Enlaces
  • Resumen
    • In this paper, the notion of $\overline{d}$-shadowable points for continuous maps on compact metric spaces is introduced and it is proved that an equicontinuous map (not necessarily surjective) cannot have the $\overline{d}$-shadowing property. Consequently, it is shown that a minimal continuous map with the $\overline{d}$-shadowing property is chaotic in the sense of Auslander-Yorke. Then, it is proved that the existence of a pseudo-orbital specification point, the existence of an ergodic shadowable point, the pseudo-orbital specification property and the ergodic shadowing property are equivalent. Consequently, it is shown that existence of a pseudo-orbital specification point implies the specification property. Next, it is proved that the existence of a point which is both shadowable and specification point implies the pseudo-orbital specification property, the ergodic shadowing property, the shadowing property and the $\overline{d}$-shadowing property. Consequently, it is shown that the existence of a shadowable point in a topologically mixing system implies the shadowing property as well as the specification property. Finally, it is proved that a continuous map with the specification property is mean sensitive.

  • Referencias bibliográficas
    • D. V. Anosov, On a class of invariant sets of smooth dynamical systems, in: Proc. 5th Int. Conf. on Nonlin. Oscill. 2 (1970), 39-45.
    • E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic? Convergence in Ergodic Theory and Probability (Columbus, OH, 1993) (Ohio...
    • N. Aoki and K. Hiraide, Topological theory of dynamical systems: recent advances, North-Holland Mathematical Library, North-Holland Publishing...
    • R. Bowen, ω-limit sets for axiom-A diffeomorphisms, J. Differential Equations 18 (1975), 333-339. https://doi.org/10.1016/0022-0396(75)90065-0
    • P. Das and T. Das, Various types of shadowing and specification on uniform spaces, J. Dyn. Control Syst. 24 (2018), 253-267. https://doi.org/10.1007/s10883-017-9388-1
    • P. K. Das and T. Das, Mean Ergodic Shadowing, Bull. Braz. Math. Soc. 54 (2023), 12. https://doi.org/10.1007/s00574-022-00325-5
    • D. A. Dastjerdi and M. Hosseini, Sub-shadowings, Nonlinear Anal. 72 (2010), 3759-3766. https://doi.org/10.1016/j.na.2010.01.014
    • P. Das, A. G. Khan, and T. Das, Measure expansivity and specification for pointwise dynamics, Bull. Braz. Math. Soc. 50 (2019), 933-948. https://doi.org/10.1007/s00574-019-00134-3
    • A. Fedeli and A. Le Donne, A note on the uniform limit of transitive dynamical systems, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 59-66....
    • A. Fakhari and F. H. Ghane, On shadowing: ordinary and ergodic, J. Math. Anal. Appl. 364 (2010), 151-155. https://doi.org/10.1016/j.jmaa.2009.11.004
    • S. F. Kolyada, Li-Yorke sensitivity and other concepts of chaos, Ukr. Math. J. 56 (2004), 1242-1257. https://doi.org/10.1007/s11253-005-0055-4
    • A. G. Khan, P. K. Das and T. Das, Pointwise dynamics under orbital convergence, Bull. Braz. Math. Soc. 51 (2020), 1001-1016. https://doi.org/10.1007/s00574-019-00178-5
    • J. Li, S. Tu, and X. Ye, Mean equicontinuity and mean sensitivity, Ergod. Th. & Dynam. Sys. 35 (2015), 2587-2612. https://doi.org/10.1017/etds.2014.41
    • C. A. Morales, Shadowable points, Dyn. Syst. 31 (2016), 347-356. https://doi.org/10.1080/14689367.2015.1131813
    • E. Rego and A. Arbieto, On the entropy of continuous flows with uniformly expansive points and the globalness of shadowable points with gaps,...
    • P. Sharma, Uniform convergence and dynamical behaviour of a discrete dynamical system, Z. Angew. Math. Phys. 3 (2015), 766-770. https://doi.org/10.4236/jamp.2015.37093
    • K. Sigmund, On dynamical system with the specification property, Trans. Amer. Math. Soc. 190 (1974), 285-299. https://doi.org/10.1090/S0002-9947-1974-0352411-X
    • X. Wu, P. Oprocha, and G. Chen, On various definitions of shadowing with average error in tracing, Nonlinearity 29 (2016), 1942-1972. https://doi.org/10.1088/0951-7715/29/7/1942
    • P. Walter, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno