Ir al contenido

Documat


Notions of mixing and sensitivities for triangular map and its non-autonomous components

  • Dhawan, Deepanshu [1] ; Sharma, Puneet [1]
    1. [1] Indian Institute of Technology Jodhpur
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 26, Nº. 2, 2025, págs. 601-615
  • Idioma: inglés
  • DOI: 10.4995/agt.2025.21202
  • Enlaces
  • Resumen
    • In this paper, we relate the dynamics of the triangular map to the dynamics of its individual components. We prove that if the non-autonomous system generated by a transitive point (for the base map) is topological mixing then the triangular map is transitive. We prove that if the base map is minimal and the generating family of non-autonomous systems is commutative then weak mixing of the non-autonomous system (generated by a transitive point) ensures transitivity of the triangular system. We also derive sufficient conditions for triangular map to exhibit stronger notions of mixing and provide examples to establish the necessity of the conditions imposed. We prove that a triangular system is equicontinuous if and only if each of the component systems are equicontinuous and the non-autonomous components { ( Y , Dx ) : x ∈ X } are synchronized. We prove that if the family of non-autonomous systems is synchronized then if non-autonomous system generated by a transitive point exhibits any form of mixing then non-autonomous system generated by any point exhibits the same. We also relate various forms of sensitivities for triangular map to analogous notions for the component systems.

  • Referencias bibliográficas
    • L. Assas, B. Dennis, S. Elaydi, E. Kwessi, and G. Livadiotis, Hierarchical competition models with the Allee effect II: the case of immigration,...
    • F. Balibrea, J. Smítal, and M. Štefánková, The three versions of distributional chaos, Chaos, Solitons and Fractals 23 (2005), 1581-1583....
    • F. Balibrea and L. Snoha, Topological entropy of Devaney chaotic maps, Topology and its Applications 133, no. 3 (2003), 225-239. https://doi.org/10.1016/S0166-8641(03)00090-7
    • R. D. Beer, Dynamical approaches to cognitive science, Trends in cognitive sciences 4, no. 3 (2000), 91-99. https://doi.org/10.1016/S1364-6613(99)01440-0
    • L. Block and W. Coppel, Dynamics in one dimension, Springer, 1992. https://doi.org/10.1007/BFb0084762
    • M. Brin and G. Stuck, Introduction to dynamical systems, Cambridge university press, 2002. https://doi.org/10.1017/CBO9780511755316
    • M. Čiklová, Li-Yorke sensitive minimal maps, Nonlinearity 19 (2006), 517-529. https://doi.org/10.1088/0951-7715/19/2/016
    • T. Downarowicz, Minimal subsystems of triangular maps of type 2^infty; Conclusion of the Sharkovsky classification program, Chaos, Solitons...
    • G. L. Forti, L. Paganoni, and J. Smítal, Strange triangular maps of the square, Bulletin of the Australian Mathematical Society 51, no. 3...
    • G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback control of dynamic systems, volume 4, Prentice hall Upper Saddle River, 2002.
    • J. Hantáková, Li-Yorke sensitivity does not imply Li-Yorke chaos, Ergodic Theory and Dynamical Systems 39, no. 11 (2019), 3066-3074. https://doi.org/10.1017/etds.2018.10
    • P. E. Kloeden, On Sharkovsky's cycle coexistence ordering, Bulletin of the Australian Mathematical Society 20, no. 2 (1979), 171-177....
    • S. F. Kolyada, On dynamics of triangular maps of the square, Ergodic Theory and Dynamical Systems 12, no. 4 (1992) 749-768. https://doi.org/10.1017/S0143385700007082
    • S. F. Kolyada and A. N. Sharkovsky, On topological dynamics of triangular maps of the plane, European Conference on Iteration Theory (Batschuns,...
    • S. F. Kolyada and L. Snoha, On omega-limit sets of triangular maps, Real Analysis Exchange 18, no. 1 (1992), 115-130. https://doi.org/10.2307/44133050
    • S. F. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, Random and computational dynamics 4, no. 2 (1996), 205-233.
    • V. Kornecká-Kurková, Sharkovsky's program for the classification of triangular maps is almost completed, Nonlinear Analysis: Theory, Methods...
    • M. Mazur and P. Oprocha, Subshifts, rotations and the specification property, Topological Methods in Nonlinear Analysis 46, no. 2 (2015),...
    • P. Sharma and M. Raghav, Dynamics of non-autonomous discrete dynamical systems, Topology Proceedings 52 (2018), 45-59.
    • O. Shchur, N. Gao, M. Biloš and S. Güennemann, Fast and flexible temporal point processes with triangular maps, Advances in neural information...
    • J. Smítal, Why it is important to understand dynamics of triangular maps?, Journal of Difference Equations and Applications 14, no. 6 (2008),...
    • X. Wu and G. Chen, Non-weakly almost periodic recurrent points and distributionally scrambled sets on (Sigma_2 x S^1), Topology and its Applications...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno