Ir al contenido

Documat


Ontology-based Extractive Text Summarization: The Contribution of Instances

  • Autores: Murillo Lagranha Flores, Elder Rizzon Santos, Ricardo Azambuja Silveira
  • Localización: Computación y Sistemas (CyS), ISSN 1405-5546, ISSN-e 2007-9737, Vol. 23, Nº. 3, 2019, págs. 905-914
  • Idioma: inglés
  • DOI: 10.13053/cys-23-3-3270
  • Enlaces
  • Resumen
    • Abstract In this paper, we present a text summarization approach focusing on multi-document, extractive and query-focused summarization that relies on an ontology-based semantic similarity measure, that specifically explores ontology instances. We employ the DBpedia Ontology and a theoretical definition of similarity to determine query-sentence and sentence-sentence similarity. Furthermore, we define an instance-linking strategy that builds the most accurate sentence representation possible while achieving a better coverage of sentences that can be represented by ontology instances. Using primarily this instances linking strategy, the semantic similarity measure and the Maximal Marginal Relevance Algorithm (MMR), we propose a summarization model that is capable of avoiding redundancy from a more fine-grained representation of sentences, due to their representation as ontology instances. We demonstrate that our summarizer is capable of achieving compelling results when compared with relevant DUC systems and recently published related studies using ROUGE metrics. Moreover, our experiments lead us to a better understanding of how ontology instances can be used to represent sentences and what is the role of said instances in this process.

  • Referencias bibliográficas
    • Baralis, E.,Cagliero, L.,Jabeen, S.,Fiori, A.,Shah, S.. (2013). Multi-document summarization based on the Yago ontology. Expert Syst. Appl.....
    • Canhasi, E.,Kononenko, I.. (2014). Weighted archetypal analysis of the multi-element graph for query-focused multi-document summarization....
    • Carbonell, J.,Goldstein, J.. (1998). Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information...
    • Hipola, P.,Senso, J. A.,Leiva-Mederos, A.,Dominguez-Velasco, S.. (2014). Ontology-based text summarization. The case of Texminer. Library...
    • Lehmann, J.,Isele, R.,Jakob, M.,Jentzsch, A.,Kontokostas, D.,Mendes, P.,Hellmann, S.,Morsey, M.,van Kleef, P.,Auer, S.,Bizer, C.. (2014)....
    • Lin, C.-Y.. (2004). ROUGE: A package for automatic evaluation of summaries. Proc. ACL workshop on Text Summarization Branches Out. 10
    • Lin, D.. (1998). Proceedings of the Fifteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc. San Francisco,...
    • Lin, H.,Bilmes, J.. (2010). Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational...
    • Luo, W.,Zhuang, F.,He, Q.,Shi, Z.. (2013). Exploiting relevance, coverage, and novelty for query-focused multi-document summarization. Know.-Based...
    • Mendes, P. N.,Jakob, M.,García-Silva, A.,Bizer, C.. (2011). Proceedings of the 7th International Conference on Semantic Systems. ACM. New...
    • Mohamed, M. A.,Oussalah, M.. (2015). Similarity-based query-focused multi-document summarization using crowdsourced and manually-built lexical-semantic...
    • Nenkova, A.,McKeown, K.. (2012). A Survey of Text Summarization Techniques. Springer US. Boston, MA.
    • Ramezani, M.,Feizi-Derakhshi, M.-R.. (2015). Ontology-based automatic text summarization using FarsNet. Advances in Computer Science: an International...
    • Umbrath, W.,Wetzker, R.,Hennig, L.. (2008). An ontology-based approach to text summarization. Web Intelligence and Intelligent Agent Technology,...
    • Wu, K.,Li, L.,Li, J.,Li, T.. (2013). Ontology-enriched multi-document summarization in disaster management using submodular function. Information...
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno