Ir al contenido

Documat


Mining Purchase Intent in Twitter

  • Autores: Rejwanul Haque, Arvind Ramadurai, Mohammed Hasanuzzaman, Andy Way Árbol académico
  • Localización: Computación y Sistemas (CyS), ISSN 1405-5546, ISSN-e 2007-9737, Vol. 23, Nº. 3, 2019, págs. 871-881
  • Idioma: inglés
  • DOI: 10.13053/cys-23-3-3254
  • Enlaces
  • Resumen
    • Abstract Most social media platforms allow users to freely express their beliefs, opinions, thoughts, and intents. Twitter is one of the most popular social media platforms where users' post their intent to purchase. A purchase intent can be defined as measurement of the probability that a consumer will purchase a product or service in future. Identification of purchase intent in Twitter sphere is of utmost interest as it is one of the most long-standing and widely used measures in marketing research. In this paper, we present a supervised learning strategy to identify users' purchase intent from the language they use in Twitter. Recurrent Neural Networks (RNNs), in particular with Long Short-Term Memory (LSTM) hidden units, are powerful and increasingly popular models for text classification. They effectively encode sequences with varying length and capture long range dependencies. We present the first study to apply LSTM for purchase intent identification task. We train the LSTM network on semi-automatically created dataset. Our model achieves competent classification accuracy (F1= 83%) over a gold-standard dataset. Further, we demonstrate the efficacy of the LSTM network by comparing its performance with different classical classification algorithms taking this purchase intent identification task into account.

  • Referencias bibliográficas
    • Ba, J. L.,Kiros, J. R.,Hinton, G. E.. (2016). Layer normalization. CoRR.
    • Beitzel, S. M.,Jensen, E. C.,Lewis, D. D.,Chowdhury, A.,Frieder, O.. (2007). Automatic classification of web queries using very large unlabeled...
    • Cao, H.,Hu, D. H.,Shen, D.,Jiang, D.,Sun, J.-T.,Chen, E.,Yang, Q.. (2009). Proceedings of the 32nd international ACM SIGIR conference on Research...
    • Cohen, J.. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement. 20. 37-46
    • Gal, Y.,Ghahramani, Z.. (2016). A theoretically grounded application of dropout in recurrent neural networks. CoRR.
    • Goldberg, A. B.,Fillmore, N.,Andrzejewski, D.,Xu, Z.,Gibson, B.,Zhu, X.. (2009). May all your wishes come true: A study of wishes and how...
    • Gupta, V.,Varshney, D.,Jhamtani, H.,Kedia, D.,Karwa, S.. (2014). Identifying purchase intent from social posts. Proceedings of the Eighth...
    • Hochreiter, S.,Schmidhuber, J.. (1997). Long short-term memory. Neural computation. 9. 1735
    • Hu, J.,Wang, G.,Lochovsky, F.,Sun, J.-t.,Chen, Z.. (2009). Proceedings of the 18th international conference on World wide web. ACM. Madrid,...
    • Jansen, B. J.,Booth, D. L.,Spink, A.. (2008). Determining the informational, navigational, and transactional intent of web queries. Information...
    • Joulin, A.,Grave, E.,Bojanowski, P.,Mikolov, T.. (2016). Bag of tricks for efficient text classification.
    • Kingma, D. P.,Ba, J.. (2014). Adam: A method for stochastic optimization. CoRR.
    • Li, X.,Wang, Y.-Y.,Acero, A.. (2008). Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information...
    • Mikolov, T.,Sutskever, I.,Chen, K.,Corrado, G. S.,Dean, J.. (2013). Distributed representations of words and phrases and their compositionality....
    • Pennington, J.,Socher, R.,Manning, C.. (2014). Glove: Global vectors for word representation. Proceedings of the 2014 conference on empirical...
    • Ramanand, J.,Bhavsar, K.,Pedanekar, N.. (2010). Wishful thinking: finding suggestions and'buy'wishes from product reviews. Proceedings...
    • Rumelhart, D. E.,Hinton, G. E.,Williams, R. J.. (1986). Learning representations by back-propagating errors. Nature. 323. 533
    • Wang, J.,Cong, G.,Zhao, W. X.,Li, X.. (2015). Mining user intents in twitter: A semi-supervised approach to inferring intent categories for...
    • Wang, Y.,Huang, M.,Zhao, L.. (2016). Attention-based LSTM for aspect-level sentiment classification. Proceedings of the 2016 conference on...
    • Werbos, P. J.. (1990). Backpropagation through time: what it does and how to do it. Proceedings of the IEEE. 78. 1550
    • Zhou, P.,Qi, Z.,Zheng, S.,Xu, J.,Bao, H.,Xu, B.. (2016). Text classification improved by integrating bidirectional lstm with two-dimensional...
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno