Ir al contenido

Documat


A study of {\textrm{v}}-number for some monomial ideals

  • Biswas, Prativa [1] ; Mandal, Mousumi [1]
    1. [1] Indian Institute of Technology Kharagpur

      Indian Institute of Technology Kharagpur

      India

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 3, 2025, págs. 667-682
  • Idioma: inglés
  • DOI: 10.1007/s13348-024-00451-x
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we give formulas for {\textrm{v}}-number of edge ideals of some graphs like path, cycle, 1-clique sum of a path and a cycle, 1-clique sum of two cycles and join of two graphs. For an {\mathfrak {m}}-primary monomial ideal I\subset S=K[x_1,\ldots ,x_t], we provide an explicit expression of {\textrm{v}}-number of I, denoted by {\textrm{v}}(I), and give an upper bound of {\textrm{v}}(I) in terms of the degree of its generators. We show that for a monomial ideal I, {\textrm{v}}(I^{n+1}) is bounded above by a linear polynomial for large n and for certain classes of monomial ideals, the upper bound is achieved for all n\ge 1. For {\mathfrak {m}}-primary monomial ideal I we prove that {\textrm{v}}(I)\le {\text {reg}}(S/I) and their difference can be arbitrarily large.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno