Ir al contenido

Documat


Polynomial growth of Betti sequences over local rings

  • Avramov, Luchezar L. [1] ; Seceleanu, Alexandra [1] ; Yang, Zheng [2]
    1. [1] University of Nebraska–Lincoln

      University of Nebraska–Lincoln

      Estados Unidos

    2. [2] Sichuan University

      Sichuan University

      China

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 3, 2025, págs. 627-650
  • Idioma: inglés
  • DOI: 10.1007/s13348-024-00449-5
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This is a study of the sequences of Betti numbers of finitely generated modules over a complete intersection local ring, R. The subsequences (\beta ^R_i(M)) with even, respectively, odd i are known to be eventually given by polynomials in i with equal leading terms. We show that these polynomials coincide if {{I}{}^{\scriptscriptstyle \square }}, the ideal generated by the quadratic relations of the associated graded ring of R, satisfies {\text {height}}{{I}{}^{\scriptscriptstyle \square }} \ge {\text {codim}}R -1, and that the converse holds if R is homogeneous or {\text {codim}}R \le 4. Subsequently Avramov, Packauskas, and Walker proved that the terms of degree j > {\text {codim}}R -{\text {height}}{{I}{}^{\scriptscriptstyle \square }} of the even and odd Betti polynomials are equal. We give a new proof of that result, based on an intrinsic characterization of residue rings of c.i. local rings of minimal multiplicity obtained in this paper. We also show that that bound is optimal.

  • Referencias bibliográficas
    • Avramov, L.L.: Small homomorphisms of local rings. J. Algebra 50, 400–453 (1978)
    • Avramov, L.L.: Homological asymptotics of modules over local rings. In: Commutative Algebra. Math. Sci. Res. Inst. Publ., 15, pp. 33–62. Springer,...
    • Avramov, L.L.: Modules of finite virtual projective dimension. Invent. Math. 96, 71–101 (1989)
    • Avramov, L.L.: Modules with extremal resolutions. Math. Res. Lett. 3, 319–328 (1993)
    • Avramov, L.L.: Local rings over which all modules have rational Poincaré series. J. Pure Appl. Algebra 91, 29–48 (1994)
    • Avramov, L.L.: Infinite free resolutions, Six lectures on commutative algebra (Bellaterra,: Progr. Math. 166), pp. 1–118. Birkhäuser, Basel...
    • Avramov, L.L.: Betti numbers of Golod residue rings (in preparation)
    • Avramov, L.L., Buchweitz, R.-O.: Homological algebra modulo a regular sequence with special attention to codimension two. J. Algebra 230,...
    • Avramov, L.L., Gasharov, V.N., Peeva, I.N.: A periodic module of infinite virtual projective dimension. J. Pure Appl. Algebra 62, 1–5 (1989)
    • Avramov, L.L., Gasharov, V.N., Peeva, I.N.: Complete intersection dimension. Publ. Math. IHES 86, 67–114 (1997)
    • Avramov, L.L., Packauskas, N., Walker, M.E.: Quasi-polynomial growth of Betti sequences over complete intersection rings (in preparation)
    • Avramov, L.L., Sun, L.-C.: Cohomology operators defined by a deformation. J. Algebra 204, 684–710 (1998)
    • Avramov, L.L., Yang, Z.: Betti sequences over standard graded commutative algebras with two relations, Homological and computational methods...
    • Bourbaki, N.: Algèbre commutative. Chapitres 8 et 9. Springer, Berlin (2006)
    • Eagon, J.A.: Examples of Cohen-Macaulay rings that are not Gorenstein. Math. Z. 109, 109–111 (1962)
    • Eagon, J.A., Northcott, D.J.: Ideals defined by matrices and a certain complex associated with them. Proc. Roy. Soc. Ser. A 269, 188–204 (1962)
    • Eagon, J.A., Northcott, D.J.: Generically acyclic complexes and generically perfect ideals. Proc. Roy. Soc. Ser. A 299, 147–172 (1967)
    • Eisenbud, D.: Homological algebra on a complete intersection, with an application to group representations. Trans. Am. Math. Soc. 260, 35–64...
    • Eisenbud, D.: Commutative algebra. In: With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150. Springer, New York...
    • Eisenbud, D., Harris, J.: On varieties of minimal degree (a centennial account). In: Algebraic Geometry, Proceedings of Symposia in Pure Mathematics,...
    • Engheta, B.: A bound on the projective dimension of three cubics. J. Symb. Comput. 45(1), 60–73 (2010)
    • Golod, E.S.: On the homologies of certain local rings, Soviet Math. Doklady 3, 745–448 (1962)
    • Grothendieck, A.: Éléments de Géometrie Algèbrique. Chapitre 0_{{\rm III}}, Publ. Math. IHES 11 , 349–423 (1961)
    • Gulliksen, T.H.: A change of ring theorem with applications to Poincaré series and intersection multiplicity. Math. Scand. 34, 167–183 (1974)
    • Gulliksen, T.H.: On the deviations of a local ring. Math. Scand. 47, 5–20 (1980)
    • Herzog, J., Hibi, T.: Componentwise linear ideals. Nagoya Math. J. 153, 141–153 (1999)
    • Herzog, J., Iyengar, S.: Koszul modules. J. Pure Appl. Algebra 201, 154–188 (2005)
    • Herzog, J., Reiner, V., Welker, V.: Componentwise linear ideals and Golod rings. Michigan Math. J. 46, 211–223 (1999)
    • Hochster, M.: Generically perfect modules are strongly generically perfect. Proc. Lond. Math. Soc. (3) 23, 477–88 (1971)
    • Hochster, M., Eagon, J.: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Am. J. Math. 93, 1020–1058...
    • Huneke, C., Mantero, P., McCullough, J., Seceleanu, A.: The projective dimension of codimension two algebras presented by quadrics. J. Algebra...
    • Levin, G.: Local rings and Golod homomorphisms. J. Algebra 37, 266–289 (1975)
    • Mehta, V.: Endomorphisms of complexes and modules over Golod rings, Ph.D. Thesis, University of California, Berkeley (1976)
    • Northcott, D.J.: Some remarks on the theory of ideals defined by matrices. Quart. J. Math. Oxford (2) 14, 193–204 (1963)
    • Polishchuk, A., Positselski, L.: Quadratic Algebras, University Lecture Series, 37. American Mathematics Soceity, Providence (2005)
    • Rossi, M.E., Valla, G.: Multiplicity and t-isomultiple ideals. Nagoya Math. J. 64, 93–101 (1980)
    • Şega, L.M.: Homological properties of powers of the maximal ideal of a local ring. J. Algebra 241, 827–858 (2001)
    • Swinnerton-Dyer, H.P.F.: An enumeration of all varieties of degree 4. Am. J. Math. 95, 403–418 (1973)
    • Tate, J.: Homology of Noetherian rings and local rings. Illinois J. Math. 1, 14–27 (1957)
    • Valabrega, P., Valla, G.: Form rings and regular sequences. Nagoya Math. J. 72, 93–101 (1978)
    • X.X.X., Correspondence, Amer. J. Math. 79,: 951–952. See also A. Weil, Appendix I: Corresponence, Œuvres Scientifiques, Volume II (1951–1964)....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno