Ir al contenido

Documat


Quadric cones on the boundary of the Mori cone for very general blowups of the plane

  • Ciliberto, Ciro [1] ; Miranda, Rick [2] ; Roé, Joaquim [3] Árbol académico
    1. [1] University of Rome Tor Vergata

      University of Rome Tor Vergata

      Roma Capitale, Italia

    2. [2] Colorado State University

      Colorado State University

      Estados Unidos

    3. [3] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 3, 2025, págs. 601-611
  • Idioma: inglés
  • DOI: 10.1007/s13348-024-00447-7
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we show the existence of cones over a 8-dimensional rational sphere at the boundary of the Mori cone of the blow-up of the plane at s\ge 13 very general points. This gives evidence for De Fernex’s strong \Delta-conjecture, which is known to imply Nagata’s conjecture. This also implies the existence of a multitude of good and wonderful rays as defined in Ciliberto et al. (Clay Math Proc 18:185–203, 2013).

  • Referencias bibliográficas
    • Alberich-Carramiñana, M.: Geometry of the Plane Cremona Maps. Lecture Notes in Mathematics, vol. 1769. Springer-Verlag, Berlin (2002)
    • Calabri, A., Ciliberto, C.: Birational classifiction of curves on rational surfaces. Nagoya Math J. 199, 43–93 (2010)
    • Chiantini, L., Ciliberto, C.: Weakly defective vareties. Trans. A.M.S. 354(1), 151–178 (2001)
    • Ciliberto, C., Harbourne, B., Miranda, R., Roé, J.: Variations on Nagata’s conjecture. Clay Math. Proc. 18, 185–203 (2013)
    • Ciliberto, C., Miranda, R.: Degenerations of planar linear systems. J. Reine Angew. Math. 501, 191–220 (1998)
    • Ciliberto, C., Miranda, R., Roé, J.: Irrational nef rays at the boundary of the Mori cone for very general blowups of the plane. Mich. Math....
    • Coolidge, J.L.: A Treatise on Algebraic Plane Curves. Oxford University Press, Oxford (1931)
    • de Fernex, T.: On the Mori cone of blow-ups of the plane
    • Dolgachev, I.V.: Classical Algebraic Geometry. A Modern View, vol. xii, p. 639. Cambridge University Press, Cambridge (2012)
    • Du Val, P.: On the Kantor group of a set of points in a plane. Proc. Lond. Math. Soc. 42, 18–51 (1936)
    • Lesieutre, J.: The diminished base locus is not always closed. Compos. Math. 150(10), 1729–1741 (2014)
    • Nagata, M.: On the fourteenth problem of Hilbert. Am. J. Math. 81, 766–772 (1959)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno