Ir al contenido

Documat


The Picard index of a surface with torus action

  • Springer, Justus [1]
    1. [1] University of Tübingen

      University of Tübingen

      Landkreis Tübingen, Alemania

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 3, 2025, págs. 515-544
  • Idioma: inglés
  • DOI: 10.1007/s13348-024-00443-x
  • Enlaces
  • Resumen
    • We consider normal rational projective surfaces with torus action and provide a formula for their Picard index, that means the index of the Picard group inside the divisor class group. As an application, we classify the log del Pezzo surfaces with torus action of Picard number one up to Picard index 10 000.

  • Referencias bibliográficas
    • Alekseev, V.A., Nikulin, V.V.: Classification of del Pezzo surfaces with log-terminal singularities of index \le 2 and involutions on K3 surfaces....
    • Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox rings, vol. 144. Cambridge Studies in Advanced Mathematics, Cambridge University...
    • Bäuerle, A. Sharp volume and multiplicity bounds for Fano simplices. J Algebr Comb 61, 9 (2025)
    • Cox, D.A., Little, J.B., Schenck, H.K.: Toric varieties, vol. 124. Graduate Studies in Mathematics, American Mathematical Society, Providence,...
    • Fujita, K., Yasutake, K.: Classification of log del Pezzo surfaces of index three. J. Math. Soc. Japan 69(1), 163–225 (2017)
    • Fulton, W.: Introduction to toric varieties, Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton, NJ (1993). The...
    • Hättig, D.: Lattice polygons and surfaces with torus action, PhD Thesis, Universität Tübingen, (2023)
    • Hättig, D., Hafner, B., Hausen, J. et al. Del Pezzo surfaces of Picard number one admitting a torus action. Annali di Matematica (2025)
    • Hättig, D., Hausen, J, Springer, J.: ldp-database: Log del Pezzo surfaces with torus action - a searchable database (2023), https://www.math.uni-tuebingen.de/forschung/algebra/ldp-database/....
    • Hättig, D., Hausen, J. & Springer, J. Classifying log del Pezzo surfaces with torus action. Rev Mat Complut (2025)
    • Hausen, J., Herppich, E.: Factorially graded rings of complexity one, Torsors, étale homotopy and applications to rational points, London...
    • Hausen, J., Herppich, E., SüSS, H.: Multigraded Factorial Rings and Fano Varieties with Torus Action. Documenta Math. 16(3), 71–109 (2011)
    • Hausen, J., SüSS, H.: The Cox ring of an algebraic variety with torus action. Adv. Math. 225(2), 977–1012 (2010)
    • Hausen, J., Keicher, S., Laface, A.: Computing Cox rings. Math. Comput. 85(297), 467–502 (2016)
    • Hausen, J., Wrobel, M.: Non-complete rational T-varieties of complexity one. Math. Nachr. 290(5–6), 815–826 (2017)
    • Kasprzyk, A.M.: Bounds on fake weighted projective space. Kodai Math. J. 32(2), 197–208 (2009)
    • Nakayama, N.: Classification of log del Pezzo surfaces of index two. J. Math. Sci. Univ. Tokyo 14(3), 293–498 (2007)
    • Orlik, P.: Wagreich, Philip: Isolated singularities of algebraic surfaces with \mathbb{C} ^*-action. Ann. of Math. (2) 93, 205–228 (1971)
    • Orlik, P., Wagreich, P.: Singularities of algebraic surfaces with \mathbb{C} ^*-action. Math. Ann. 193, 121–135 (1971)
    • Orlik, P., Wagreich, P.: Algebraic surfaces with kk^*-action. Acta Math. 138(1–2), 43–81 (1977)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno