Ir al contenido

Documat


Simon conjecture and the \text{ v }-number of monomial ideals

  • Ficarra, Antonino [1]
    1. [1] University of Messina

      University of Messina

      Mesina, Italia

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 3, 2025, págs. 477-492
  • Idioma: inglés
  • DOI: 10.1007/s13348-024-00441-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let I\subset S be a graded ideal of a standard graded polynomial ring S with coefficients in a field K, and let {\text {v}}(I) be the {\text {v}}-number of I. In previous work, we showed that for any graded ideal I\subset S, then {\text {v}}(I^k)=\alpha (I)k+b, for all k\gg 0, where \alpha (I) is the initial degree of I and b is a suitable integer. In the present paper, using polarization, we extend Simon conjecture to any monomial ideal. As a consequence, if Simon conjecture holds, I is a monomial ideal generated in a single degree and all powers of I have linear quotients, then b\in \{-1,0\}. This fact suggests that if I is an equigenerated monomial ideal with linear powers, then {\text {v}}(I^k)=\alpha (I)k-1, for all k\ge 1. We verify this conjecture for monomial ideals with linear powers having {\text {depth}}\,S/I=0, edge ideals with linear resolution, polymatroidal ideals, and Hibi ideals.

  • Referencias bibliográficas
    • Ambhore, S.B., Saha, K., Sengupta, I.: The \text{v}-Number of Binomial Edge Ideals (2023). arXiv:2304.06416
    • Bigdeli, M., Yazdan Pour, A.A., Zaare-Nahandi, R.: Decomposable clutters and a generalization of Simon’s conjecture. J. Algebra 531, 102–124...
    • Biswas, P., Mandal, M.: A study of v-number for some monomial ideals (2023). arXiv:2308.08604
    • Brodmann, M.: Asymptotic stability of \text{ Ass }(M/I^nM). Proc. Am. Math. Soc. 74, 16–18 (1979)
    • Civan, Y.: The \text{ v }-number and Castelnuovo-Mumford regularity of graphs. J. Algebr. Comb. 57, 161–169 (2023)
    • Conca, A.: Hilbert function and resolution of the powers of the ideal of the rational normal curve. Commutative algebra, homological algebra...
    • Cooper, S.M., Seceleanu, A., Tohăneanu, S.O., Vaz Pinto, M., Villarreal, R.H.: Generalized minimum distance functions and algebraic invariants...
    • Crupi, M., Ficarra, A.: Very well-covered graphs by Betti splittings. J. Algebra 629, 76–108 (2023)
    • Crupi, M., Ficarra, A.: Very well-covered graphs via the Rees algebra (2023)
    • Dirac, G.A.: On rigid circuit graphs. Abh. Math. Sem. Univ. Hambg. 38, 71–76 (1961)
    • Erey, N., Ficarra, A.: Matching powers of monomial ideals and edge ideals of weighted oriented graphs (2023)
    • Erey, N., Herzog, J., Hibi, T., Saeedi Madani, S.: The normalized depth function of squarefree powers. Collect. Math. (2023)
    • Faridi, S.: Monomial Ideals via Square-free Monomial Ideals, Lecture Notes Pure Applied Mathematics, vol. 244, pp. 85–114. Chapman and Hall...
    • Ficarra, A.: Homological shifts of polymatroidal ideals (2022)
    • Ficarra, A.: Homological Shift Ideals: Macaulay2 Package (2023)
    • Ficarra, A., Macias Marques, P.: The \text{ v }-function of powers of sums of ideals (2024)
    • Ficarra, A., Sgroi, E.: Asymptotic behaviour of integer programming and the \text{ v }-function of a graded filtration (2024)
    • Ficarra, A., Sgroi, E.: VNumber, Macaulay2 Package available at https://github.com/EmanueleSgroi/VNumber (2024)
    • Ficarra, A., Sgroi, E.: Asymptotic behaviour of the \text{ v }-number of homogeneous ideals (2023)
    • Fröberg, R.: On Stanley-Reisner rings, Topics in algebra, Part 2 (Warsaw, 1988), 57–70, Banach Center Publ., 26, Part 2, PWN, Warsaw (1990)
    • Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry.
    • Grisalde, G., Reyes, E., Villarreal, R.H.: Induced matchings and the v-number of graded ideals. Mathematics 9(22) (2021)
    • Herzog, J., Hibi, T.: Distributive lattices, bipartite graphs and Alexander duality. J. Algebr. Comb. 22, 289–302 (2005)
    • Herzog, J., Hibi, T.: Cohen-Macaulay polymatroidal ideals. Eur. J. Comb. 27(4), 513–517 (2006)
    • Herzog, J., Hibi, T.: Monomial Ideals, Graduate texts in Mathematics, vol. 260. Springer, Berlin (2011)
    • Jahan, A.S.: Prime filtrations of monomial ideals and polarizations. J. Algebra 312(2), 1011–1032 (2007)
    • Jaramillo-Velez, D., Seccia, L.: Connected domination in graphs and \text{ v }-numbers of binomial edge ideals. Collect. Math. (2023)
    • Jaramillo, D., Villarreal, R.H.: The \text{ v }-number of edge ideals. J. Comb. Theory Ser. A 177, Paper No. 105310, 35 (2021)
    • Martínez-Bernal, J., Morey, S., Villarreal, R.H.: Associated primes of powers of edge ideals. Collect. Math. 63, 361–374 (2012)
    • Ratliff, L.J., Jr.: On prime divisors of I^n, n large. Mich. Math. J. 23, 337–352 (1976)
    • Saha, K.: The \text{ v }-number and Castelnuovo-Mumford regularity of cover ideals of graphs (2023)
    • Saha, K., Sengupta, I.: The \text{ v }-number of monomial ideals. J. Algebr. Comb. 56, 903–927 (2022)
    • Simon, R.S.: Combinatorial properties of cleanness. J. Algebra 167, 361–388 (1994)
    • Vaz Pinto, M., Villarreal, R.H.: Graph rings and ideals: Wolmer Vasconcelos contributions (2023)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno