Ir al contenido

Documat


Dynamic Analysis of FitzHugh-Nagumo System

  • Wenzhe Cui [1]
    1. [1] Sun Yat-sen University

      Sun Yat-sen University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we prove the existence of traveling train and impulse in FitzHughNagumo system ut = ux x − u(u − 1)(u − a) − v, vt = ε(u − γv) by studying a saddle-node bifurcation and a Bogdanov-Takens bifurcation of the corresponding three-dimensional system x˙ = z, y˙ = b(x − dy), z˙ = x(x − 1)(x − a) + y + cz.

      The bifurcation analysis of the three-dimensional system indicates that the number of steady-state solutions in FitzHugh-Nagumo system can change through saddle-node bifurcation of the three-dimensional system, and there are different parameter values for which the three-dimensional system can have a limit cycle or a homoclinic loop, which implies that FitzHugh-Nagumo system can have a traveling train or an impulse for some specific parameters.

  • Referencias bibliográficas
    • 1. Arioli, G., Koch, H.: Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation. Nonlinear Anal. 113, 51–70...
    • 2. Bogdanov, R.: Bifurcations of a limit cycle for a family of vector fields on the plane. Sel. Math. Sov. 1, 373–388 (1981)
    • 3. Bogdanov, R.: Versal deformations of a singular point on the plane in the case of zero eigenvalues. Sel. Math. Sov. 1, 389–421 (1981)
    • 4. Bell, D., Deng, B.: Singular perturbation of N-front travelling waves in the FitzHugh-Nagumo equations. Nonlinear Anal. Real World Appl....
    • 5. Carpenter, G.: A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differential Equations...
    • 6. Deng, B.: The existence of infinitely many travelling front and back waves in the FitzHugh-Nagumo equations. SIAM J. Math. Anal. 22(6),...
    • 7. Euzébio, R., Llibre, J., Vidal, C.: Zero-Hopf bifurcation in the FitzHugh-Nagumo system. Math. Methods Appl. Sci. 38, 4289–4299 (2015)
    • 8. FitzHugh, R.: Impulses and physiological state in theoretical models of nerve membrane. Biophys. J . 12, 445–467 (1961)
    • 9. Flores, G.: Stability analysis for the slow travelling pulse of the FitzHugh-Nagumo system. SIAM J. Math. Anal. 22(2), 392–399 (1991)
    • 10. Gao, W., Wang, J.: Existence of wavefronts and impulses to FitzHugh-Nagumo equations. Nonlinear Anal. 57, 667–676 (2004)
    • 11. Gao, W.: Two kinds of solutions to the FitzHugh-Nagumo Equations, M.S. thesis, Central China Normal University, (2001)
    • 12. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J....
    • 13. Hastings, S.: On the existence of homoclinic and periodic orbits for the FitzHugh-Nagumo equations. Quart. J. Math. Oxford Ser. 27(2),...
    • 14. Hastings, S.: Single and multiple pulse waves for the FitzHugh-Nagumo equations. SIAM J. Appl. Math. 42, 247–260 (1982)
    • 15. Yuri, A.: Kuznetsov, Elements of applied bifurcation theory, thired Springer, New York (2004)
    • 16. Llibre, J., Valls, C.: Analytic first integrals of the FitzHugh-Nagumo systems. Z. Angew. Math. Phys. 60, 237–245 (2009)
    • 17. Llibre, J., Valls, C.: Liouvillian integrability of the FitzHugh-Nagumo systems. J. Geom. Phys. 60, 1974–1983 (2010)
    • 18. Llibre, J., Tian, Y.: Dynamics of the FitzHugh-Nagumo system having invariant algebraic surfaces. Z. Angew. Math. Phys. 72, 15 (2021)
    • 19. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)
    • 20. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)
    • 21. Rauch, J., Smoller, J.: Qualitative theory of the FitzHugh-Nagumo equations. Adv. Math. 27, 12–44 (1978)
    • 22. Takens, F.: Forced oscillations and bifurcation, Applications of Global Analysis I. Comm. Math. Inst. Rijksuniversitat Utrecht. 3, 1–59...
    • 23. Valls, C.: On the global dynamics of the Newell-Whitehead system. J. Nonlinear Math. Phys. 26(4), 569–578 (2019)
    • 24. Wang, S.: Hopf bifurcation of traveling wave solution of FitzHugh-Nagumo system, M.S. thesis, Shanghai Jiao Tong University, (2010)
    • 25. Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos, 2ed edn. Springer, New York (2003)
    • 26. Zhang, L., Yu, J.: Invariant algebraic surfaces of the FitzHugh-Nagumo system. J. Math. Anal. Appl. 483, 123097 (2020)
    • 27. Zhang, L., Yu, J., Zhang, X.: Global dynamical behavior of FitzHugh-Nagumo systems with invariant algebraic surfaces. Qual. Theory Dyn....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno