Ir al contenido

Documat


The critical periods of a planar piecewise linear system defined in two or three zones separated by parallel lines

  • Li Xiong [1] ; Zhengdong Du [1]
    1. [1] Sichuan University

      Sichuan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate the critical periods of a planar piecewise linear system with a crossing period annulus defined in three zones separated by two parallel lines.

      Assume that the system has at least a closed orbit crossing all switching lines, and has at most one isolated point in the sliding set. When the system can be reduced to a two-zoned refracting system and has a crossing period annulus, we obtain conditions under which it has a global isochronous center and prove that it has at most one critical period for the crossing period annulus, and this upper bound can be reached. For the general case, we consider two scenarios. In the first scenario, we assume that the system has at least one degenerate subsystem and has no singular lines. In the second scenario, we assume that the central subsystem has a singular line and the trace of the left subsystem vanishes. Then we prove that it has no isochronous global centers.

      Moreover, we prove that it has at most six critical periods for the crossing period annulus, and there are parameters of the system such that the crossing period annulus has four critical periods.

  • Referencias bibliográficas
    • 1. Andrade, K.S., Cespedes, O.A.R., Cruz, D.R., Novaes, D.D.: Higher order Melnikov analysis for planar piecewise linear vector fields with...
    • 2. Andrade,K. S., Gomide,O. M. L., Novaes,D. D.: Bifurcation diagrams of global connections in Filippov systems, Nonlinear Anal. Hybrid Syst....
    • 3. Bastos,J. L. R., Buzzi,C. A., Torregrosa,J.: Cyclicity near infinity in piecewise linear vector fields having a nonregular switching line,...
    • 4. Buzzi, C.A., Pessoa, C., Torregrosa, J.: Piecewise linear perturbations of a linear center. Discrete Contin. Dyn. Syst. 33, 3915–3936 (2013)
    • 5. Cardin, P.T., Torregrosa, J.: Limit cycles in planar piecewise linear differential systems with nonregular separation line. Phys. D 337,...
    • 6. Carmona, V., Fernández-Sánchez, F.: Integral characterization for Poincaré half-maps in planar linear systems. J. Differ. Equ. 305, 319–346...
    • 7. Carmona,V., Fernández-Sánchez,F., Novaes,D. D.: A succinct characterization of period annuli in planar piecewise linear differential systems...
    • 8. Carmona,V., Fernández-Sánchez,F., Novaes,D. D.: Uniform upper bound for the number of limit cycles of planar piecewise linear differential...
    • 9. Chavarriga, J., Sabatini, M.: A survey of isochronous centers. Qual. Theory Dyn. Syst. 1, 1–70 (1999)
    • 10. Chen, T., Huang, L., Huang, W., Li, W.: Bi-center conditions and local bifurcation of critical periods in a switching Z2 equivariant cubic...
    • 11. Chen, X., Romanovski, V.G., Zhang,W.: Degenerate Hopf bifurcations in a family of FF-type switching systems. J. Math. Anal. Appl. 432,...
    • 12. Chen,T., Llibre,J.: Nilpotent center in a continuous piecewise quadratic polynomial hamiltonian vector field, Internat. J. Bifur. Chaos...
    • 13. Chen, X., Zhang, W.: Isochronicity of centers in a switching Bautin system. J. Differ. Equ. 252, 2877– 2899 (2012)
    • 14. Chicone, C., Jacobs, M.: Bifurcation of critical periods for plane vector fields. Trans. Amer. Math. Soc. 312, 433–486 (1989)
    • 15. Chicone, C., Dumortier, F.: Finiteness for critical periods of planar analytic vector fields. Nonlinear Anal. 20, 315–335 (1993)
    • 16. Chow, S.N., Sanders, J.A.: On the number of critical points of the period. J. Differ. Equ. 64, 51–66 (1986)
    • 17. Colak, I.E., Llibre, J., Valls, C.: Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields. Adv. Math....
    • 18. Coll, B., Gasull, A., Prohens, R.: Center-focus and isochronous center problems for discontinuous differential equations. Discrete Contin....
    • 19. Coll, B., Gasull, A., Prohens, R.: Degenerate Hopf bifurcations in discontinuous planar systems. J. Math. Anal. Appl. 253, 671–690 (2001)
    • 20. de Carvalho Braga,D., Mello,L. F.: More than three limit cycles in discontinuous piecewise linear differential systems with two zones...
    • 21. de Carvalho Braga,D., da Fonseca,A. F., Gonçalves,L. F., Mello,L. F.: Lyapunov coefficients for an invisible fold-fold singularity in...
    • 22. de Maesschalck, P., Torregrosa, J.: Critical periods in planar polynomial centers near a maximum number of cusps. J. Differ. Equ. 380,...
    • 23. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth Dynamical Systems: Theory and Applications. Springer-Verlag,...
    • 24. Ferˇcec, B., Levandovskyy, V., Romanovski, V.G., Shafer, D.S.: Bifurcation of critical periods of polynomial systems. J. Differ. Equ....
    • 25. Freire, E., Ponce, E., Rodrigo, F., Torres, F.: Bifurcation sets of continuous piecewise linear systems with two zones, Internat. J. Bifur...
    • 26. Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11, 181–211 (2012)
    • 27. Freire,E., Ponce,E., Torregrosa,J., Torres,F.: Limit cycles from a monodromic infinity in planar piecewise linear systems, J. Math. Anal....
    • 28. Gasull, A., Liu, C., Yang, J.: On the number of critical periods for planar polynomial systems of arbitrary degree. J. Differ. Equ. 249,...
    • 29. Gasull,A., Torregrosa,J., Zhang,X.: Piecewise linear differential systems with an algebraic line of separation, Electron. J. Differ. Equ....
    • 30. Gasull, A.: Some open problems in low dimensional dynamical systems. SeMA J. 78, 233–269 (2021)
    • 31. Gouveia, M.R.A., Llibre, J., Novaes, D.D.: On limit cycles bifurcating from the infinity in discontinuous piecewise linear differential...
    • 32. Gouveia,L. F. S., Torregrosa,J.: Local cyclicity in low degree planar piecewise polynomial vector fields, Nonlinear Anal.-Real World Appl....
    • 33. Han,M., Liu,S.: Hopf bifurcation in a class of piecewise smooth near-Hamiltonian systems, Bull. Sci. Math. 195 (2024), 103471, 30 pages
    • 34. Han, M., Yu, P.: Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles, Applied Mathematical Sciences 181. Springer-Verlag,...
    • 35. Huang,W., He,D., Cai,J.: Local cyclicity and criticality in FF-type piecewise smooth cubic and quartic Kukles systems, Nonlinear Anal.-Real...
    • 36. Huan, S., Yang, X.: On the number of limit cycles in general planar piecewise linear systems. Discrete Contin. Dyn. Syst. 32, 2147–2164...
    • 37. Huan, S., Yang, X.: On the number of limit cycles in general planar piecewise linear systems of node-node types. J. Math. Anal. Appl....
    • 38. Jia, M., Su, Y., Chen, H.: Global studies on a continuous planar piecewise linear differential system with three zones. Nonlinear Dynam....
    • 39. Li, F., Yu, P., Tian, Y., Liu, Y.: Center and isochronous center conditions for switching systems associated with elementary singular...
    • 40. Llibre, J., Ponce, E.: Piecewise linear feedback systems with arbitrary number of limit cycles, Internat. J. Bifur Chaos 13, 895–904 (2003)
    • 41. Llibre, J., Ponce, E., Zhang, X.: Existence of piecewise linear differential systems with exactly n limit cycles for all n ∈ N. Nonlinear...
    • 42. Llibre,J., Ponce,E.: Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete...
    • 43. Llibre, J., Mereu, A.C.: Limit cycles for discontinuous quadratic differential systems with two zones. J. Math. Anal. Appl. 413, 763–775...
    • 44. Lum, R., Chua, L.O.: Global properties of continuous piecewise linear vector fields, part I: Simplest case in R2. Int. J. Circuit Theory...
    • 45. Medrado, J.C., Torregrosa, J.: Uniqueness of limit cycles for sewing planar piecewise linear systems. J. Math. Anal. Appl. 431, 529–544...
    • 46. Novaes, D.D., Silva, L.A.: Lyapunov coefficients for monodromic tangential singularities in Filippov vector fields. J. Differ. Equ. 300,...
    • 47. Novaes,D. D.: On the Hilbert number for piecewise linear vector fields with algebraic discontinuity set, Phys. D 441 (2022), 133523, 15...
    • 48. Pessoa, C., Ribeiro, R.: Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems...
    • 49. Pessoa,C., Ribeiro,R.: Limit cycles bifurcating from a periodic annulus in discontinuous planar piecewise linear Hamiltonian differential...
    • 50. Pessoa, C., Ribeiro, R., Novaes, D., Gouveia, M., Euzébio, R.: On cyclicity in discontinuous piecewise linear near-Hamiltonian differential...
    • 51. Pessoa,C., Ribeiro,R.: Bifurcation of limit cycles from a periodic annulus formed by a center and two saddles in piecewise linear differential...
    • 52. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: a Computational Algebra Approach. Birkhäuser Boston, Boston (2009)
    • 53. Santos,M.: The period function for some planar piecewise vector fields, Ph.D. Thesis, Universdade Federal de São Carlos, Department of...
    • 54. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1988)
    • 55. Xiong, L., Du, Z.: The period annulus and limit cycles in a planar piecewise linear system defined in three zones separated by two parallel...
    • 56. Xiong,Y., Wang,C.: Limit cycle bifurcations of planar piecewise differential systems with three zones, Nonlinear Anal.-Real World Appl....
    • 57. Xiong,L., Wu,K., Li,S.: Global dynamics of a degenerate planar piecewise linear differential system with three zones, Bull. Sci. Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno