Ir al contenido

Documat


Representation of solutions and its periodicity of quaternion difference equations with variable coefficients

  • Jiaojiao Lv [1] ; Amar Debbouche [2] ; JinRong Wang [1]
    1. [1] Guizhou University

      Guizhou University

      China

    2. [2] Guelma University, RUDN University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate general solutions and periodic solutions of quaternion difference equations (QDCEs) with variable coefficients. To begin with, we provide general solutions for linear homogeneous QDCEs (LHQDCEs), an algorithm for computing the fundamental matrix and its properties, and derive general solutions for linear nonhomogeneous QDCEs (LNHQDCEs) using the variation of constants formula as well as for semilinear QDCEs (SLQDCEs) using the fixed-point theorem. Secondly, the conditions that ensure the existence of periodic solutions for LHQDCEs are presented, thereafter, periodic solutions of LNHQDCEs under different conditions are derived using the Green function and adjoint system, respectively. Moreover, we establish the existence and uniqueness of periodic solutions of SLQDCEs. Finally, several examples are presented to demonstrate the correctness of the theoretical results.

  • Referencias bibliográficas
    • 1. Ali, M.E., Paul, G.C.: An estimation of water levels associated with a storm along the coast of Bangladesh using a non-central difference...
    • 2. Akimenko, V.V.: Asymptotically stable states of non-linear age-structured monocyclic population model II. Numerical simulation, Mathematics...
    • 3. Boukhobza, M., Debbouche, A., Shangerganesh, L., Torres, D.F.M.: Modeling the dynamics of the Hepatitis B virus via a variable-order discrete...
    • 4. Lysaker, M., Osher, S., Tai, X.C.: Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Process. 13, 1345–1357 (2004)
    • 5. Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Rev. 9, 24–82 (1967)
    • 6. Sun, J., Dong, S., Wang, F.: Local randomized neural networks with discontinuous Galerkin methods for partial differential equations. J....
    • 7. Zhang, X.: A system of generalized Sylvester quaternion matrix equations and its applications. Appl. Math. Comput. 273, 74–81 (2016)
    • 8. Chen, D., Feˇckan, M., Wang, J.: Linear quaternion-valued difference equations: Representation of solutions, controllability, and observability....
    • 9. Wang, C., Chen, D., Li, Z.: General theory of the higher-order quaternion linear difference equations via the complex adjoint matrix and...
    • 10. Wang, C., Qin, G., Agarwal, R.P.: Quaternionic exponentially dichotomous operators through Sspectral splitting and applications to Cauchy...
    • 11. Lv, J., Wang, J., Liu, K.: Hyers-Ulam stability of linear quaternion-valued differential equations with two-sided constant coefficients....
    • 12. Kou, K., Xia, Y.: Linear quaternion differential equations: Basic theory and fundamental results. Stud. Appl. Math. 141, 3–45 (2018)
    • 13. Kou, K., Liu, W., Xia, Y.: Solve the linear quaternion-valued differential equations having multiple eigenvalues. J. Math. Phys. 60, 023510...
    • 14. Xia, Y., Huang, H., Kou, K.: An algorithm for solving linear nonhomogeneous quaternion-valued differential equations and some open problems....
    • 15. Fu, T., Kou, K., Wang, J.: Relative controllability of quaternion differential equations with delay. SIAM J. Control. Optim. 61, 2927–2952...
    • 16. Lv, J., Kou, K., Wang, J.: Hyers-Ulam stability of linear quaternion-valued differential equations with constant coefficients via Fourier...
    • 17. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)
    • 18. Yu, J., Guo, Z., Zou, X.: Periodic solutions of second order self-adjoint difference equations. J. Lond. Math. Soc. 71, 146–160 (2005)
    • 19. Cai, X., Yu, J., Guo, Z.: Existence of periodic solutions for fourth-order difference equations. Computers & Mathematics with Applications...
    • 20. Campos, J., Mawhin, J.: Periodic solutions of quaternionic-valued ordinary differential equations. Annali di Matematica 185, S109–S127...
    • 21. Mawhin, J.: Degree, quaternions and periodic solutions. Phil. Trans. R. Soc. A 379, 20190378 (2021)
    • 22. Faria, T., Oliveira, J.J.: A note on global attractivity of the periodic solution for a model of hematopoiesis. Appl. Math. Lett. 94,...
    • 23. Chen, L.: Definition of determinant and cramer solutions over the quaternion field. Acta Math. Sinica 7, 171–180 (1991)
    • 24. Tobar, F.A., Mandic, D.P.: Quaternion reproducing kernel Hilbert spaces: Existence and uniqueness conditions. IEEE Trans. Inf. Theory...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno