Ir al contenido

Documat


Proportional L-Fractional Forms of Malthusian and Verhulst Equations

  • Autores: Serdal Yazıcı, Bayram Çekim, Juan José Nieto Roig Árbol académico
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this study, we define a new fractional derivative using the normalization te ρ−1 ρ t by means of the proportionality parameter ρ, which allows us to proportionally adjust the concept of the memory effect, one of the most powerful aspects of the fractional derivative. Then, we consider the Malthusian and Verhulst equations using this derivative and solve them using the power series method. We show that the series solutions are convergent and numerically estimate the radii of convergence of these series. We analyze the behavior of the solution series via rich numerical calculations.

  • Referencias bibliográficas
    • 1. Malthus, T.: An Essay on the Principle of Population. Pickering & Chatto Publishers, London (1798)
    • 2. Verhulst, P.F.: Notice sur la loi que la population suit dans son accroissement. Correspondence mathematique et physique. 10, 113–121 (1838)
    • 3. Allee, W.C.: Animal Aggregations: A Study in General Sociology. University of Chicago Press, Chicago (1931)
    • 4. Richards, F.J.: A flexible growth function for empirical use. J. Exp. Bot. 10(29), 290–300 (1959)
    • 5. Bertalanffy, V.L.: Principles and Theory of Growth. In: Nowinski, W.W. (ed.) Fundamental Aspects of Normal and Malignant Growth. Elsevier,...
    • 6. Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life...
    • 7. Tarasov, V.E.: No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 62, 157–163 (2018)
    • 8. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, 204. Elsevier, (2006)
    • 9. Podlubny, I.: Fractional Differential Equations, 198. Academic Press, San Diego (1999)
    • 10. Samko, S.G., Marichev, O.I., Kilbas, A.A.: Fractional Integrals and Derivatives: Theory and Applications. Taylor & Francis, (1993)
    • 11. El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A.: On the fractional-order logistic equation. Appl. Math. Lett. 20(7), 817–823 (2007)
    • 12. Area, I., Nieto, J.J.: Power series solution of the fractional logistic equation. Phys. A: Stat. Mech. Appl. 573, 125947 (2021)
    • 13. Khader, M.M., Babatin, M.M.: On approximate solutions for fractional logistic differential equation. Math. Probl. Eng. 2013, 391901 (2013)
    • 14. Al-Bar, R.F.: On the approximate solution of fractional logistic differential equation using operational matrices of Bernstein polynomials....
    • 15. Khader, M.M.: Numerical treatment for solving fractional logistic differential equation. Differ. Equ. Dyn. Syst. 24(1), 99–107 (2016)
    • 16. Noupoue, Y.Y.Y., Tando ˘gdu, Y., Awadalla, M.: On numerical techniques for solving the fractional logistic differential equation. Adv....
    • 17. Nieto, J.J.: Solution of a fractional logistic ordinary differential equation. Appl. Math. Lett. 123, 107568 (2022)
    • 18. Area, I., Nieto, J.J.: Fractional-order logistic differential equation with Mittag-Leffler-type kernel. Fractal Frac. 5, 273 (2021)
    • 19. Sweilam, N.H., Khader, M.M., Mahdy, A.M.S.: Numerical studies for fractional-order logistic differential equation with two different delays....
    • 20. Golmankhaneh, A.K., Cattani, C.: Fractal logistic equation. Fractal Frac. 3, 41 (2019)
    • 21. Area, I., Nieto, J.J.: On the fractional Allee logistic equation in the Caputo sense. Examples and Counterexamples. 4, 100121 (2023)
    • 22. El-Fassi, I., Nieto, J.J., Onitsuka, M.: A new representation for the solution of the Richards-type fractional differential equation....
    • 23. Nieto, J.J.: Fractional Euler numbers and generalized proportional fractional logistic differential equation. Fract. Calc. Appl. 25(3),...
    • 24. Lazopoulos, K.A., Lazopoulos, A.K.: Fractional differential geometry of curves and surfaces. Prog. Fract. Differ. Appl. 2(3), 169–186...
    • 25. Lazopoulos, K.A., Lazopoulos, A.A.: Fractional vector calculus and fractional continuum mechanics. Prog. Fract. Differ. Appl. 2(1), 67–86...
    • 26. Lazopoulos, K.A., Lazopoulos, A.K.: Fractional vector calculus and fluid mechanics. J. Mech. Behav. Mater. 26(1–2), 43–54 (2017)
    • 27. Lazopoulos, K.A., Lazopoulos, A.K.: On fractional geometry of curves. Fractal Frac. 5(10), 161 (2021)
    • 28. Jornet, M., Nieto, J.J.: Power series solution of the L-fractional logistic equation. Appl. Math. Lett. 154, 109085 (2024)
    • 29. Area, I., Lazopoulos, K.A., Nieto, J.J.: -fractional logistic equation. Prog. Fract. Differ. Appl. 9(3), 345–350 (2023)
    • 30. Jornet, M.: Theory on linear L-fractional differential equations and a new Mittag-Leffler-type function. Fractal Frac. 8(7), 411 (2024)
    • 31. Jarad, F., Abdeljawad, T., Alzabut, J.: Generalized fractional derivatives generated by a class of local proportional derivatives. Eur....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno