Ir al contenido

Documat


Asymptotically Autonomous Measure Attractors for Stochastic Nonlocal Parabolic Equations with Nonlinear Noise

  • Autores: Yangrong Li, Guifen Liu, Peter E. Kloeden Árbol académico
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We construct a pullback measure attractor for the stochastic nonautonomous nonlocal parabolic equation with nonlinear multiplicative noise, in the proof, we use a two-stage approach which is different from recent publications for other models, and we also use a special technique to estimate the moment errors for the nonlocal equations. We then show that the pullback measure attractor is backward tempered, backward tight and backward bounded in the measure phase spaces. Moreover, we prove the upper semi-convergence of pullback measure attractors towards the measure attractor when the stochastic process of external forces converges to the time-independent random force, and we also show the convergence from evolutionary measures to the invariant measure when the time tends to the minus infinity. It seems to be the first time to establish such asymptotic autonomy for evolution systems of probability measures.

  • Referencias bibliográficas
    • 1. Berná, P.M., Rossi, J.D.: Nonlocal diffusion equations with dynamical boundary conditions. Nonlinear Anal. 195, 111751 (2020)
    • 2. Billingham, J.: Dynamics of a strongly nonlocal reaction-diffusion population model. Nonlinearity 17, 313–346 (2004)
    • 3. Caraballo, T., Chen, Z., Li, L.: Convergence and approximation of invariant measures for neural field lattice models under noise perturbation....
    • 4. Caraballo, T., Han, X., Kloeden, P.E.: Nonautonomous chemostats with variable delays. SIAM J. Math. Anal. 47, 2178–2199 (2015)
    • 5. Caraballo, T., Herrera-Cobos, M., Marín-Rubio, P.: Time-dependent attractors for non-autonomous non-local reaction-diffusion equations....
    • 6. Carvalho, A.N., Langa, J.A., Robinson, J.C.: Attractors for Infinite-dimensional Nonautonomous Dynamical Systems, Appl. Math. Sciences....
    • 7. Chen, P., Wang, R., Zhang, X.: Asymptotically autonomous robusiness of random attractors for 3D BBM equations driven by nonlinear noise....
    • 8. Chipot, M., Lovat, B.: On the asymptotic behaviour of some nonlocal problems. Positivity 3, 65–81 (1999)
    • 9. Da Prato, G., Röckner, M.: A note on evolution systems of measures for time-dependent stochastic differential equations. Prog. Probab....
    • 10. Dareiotis, K., Gess, B., Tsatsoulis, P.: Ergodicity for stochastic porous media equations with multiplicative noise. SIAM J. Math. Anal....
    • 11. Debussche, A., Rosello, A.: Existence of martingale solutions for stochastic flocking models with local alignment. Stoch. PDE: Anal. Comp....
    • 12. Elorreaga, H., Gómez, A.: Exponential dichotomy for a class of asymptotically autonomous delayed differential equations. Math. Zeitschrift...
    • 13. Kloeden, P.E., Lorenz, T.: Stochastic differential equations with nonlocal sample dependence. Stoch. Anal. Appl. 28, 937–945 (2010)
    • 14. Kloeden, P.E., Simsen, J.: Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents....
    • 15. Li, D., Wang, B.: Pullback measure attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. J. Differential...
    • 16. Li, R., Mi, S., Li, D.: Pullback measure attractors for non-autonomous stochastic 3D globally modified Navier-Stokes equations. Qualit....
    • 17. Li, Y., Caraballo, T., Wang, F.: Cardinality and IOD-type continuity of pullback attractors for random nonlocal equations on unbounded...
    • 18. Li, Y., She, L., Wang, R.: Asymptotically autonomous dynamics for parabolic equations. J. Math. Anal. Appl. 459, 1106–1123 (2018)
    • 19. Li, Y., Wang, F., Kloeden, P.E.: Enlarged numerical attractors for lattice systems with porous media degeneracies. SIAM J. Appl. Dynam....
    • 20. Liu, K., Zhang, J., Wu, S., Huang, J.: Pullback measure attractors and periodic measures of stochastic non-autonomous tamed 3D Navier-Stokes...
    • 21. Marek, C., Cutland, N.J.:Measure attractors for stochastic Navier-Stokes equations. Electron. J. Probab. 3, 1–15 (1998)
    • 22. Mi, S., Li, R., Li, D.: Pullback measure attractors for non-autonomous fractional stochastic reactiondiffusion equations on unbounded...
    • 23. Mi, S., Li, D., Zeng, T.: Pullback measure attractors for non-autonomous stochastic lattice systems. Proc. Royal Soc. Edinburgh Sec. A-Math.,...
    • 24. Schmalfuss, B.: Long-time behaviour of the stochastic Navier-Stokes equation. Math. Nachr. 152, 7–20 (1991)
    • 25. Schmalfuss, B.: Qualitative properties for the stochastic Navier-Stokes equation. Nonlinear Anal. TMA 28, 1545–1563 (1997)
    • 26. Schmalfuss, B.: Measure attractors and random attractors for stochastic partial differential equations Stoch. Anal. Appl. 17, 1075–1101...
    • 27. Wang, B.: Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J. Differential...
    • 28. Wang, B.: Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise. J. Differential...
    • 29. Wang, F., Caraballo, T., Li, Y., Wang, R.: Asymptotic stability of evolution systems of probability measures of stochastic discrete modified...
    • 30. Wang, F., Guo, B.: Enlarged evolution system of measures of stochastic p-Laplace lattice systems with superlinear noise. Nonlinearity...
    • 31. Wang, R., Caraballo, T., Tuan, N.H.: Asymptotic stability of evolution systems of probability measures for nonautonomous stochastic systems:...
    • 32. Wang, R., Kinra, K., Mohan, M.T.: Asymptotically autonomous robustness in probability of random attractors for stochastic Navier-Stokes...
    • 33. Wang, R., Nane, E., Tuan, N.H.: Evolution systems of probability measures for nonautonomous KleinGordon Ito equations on ZN . Bulletin...
    • 34. Wang, S., Li, Y.: Longtime robustness of pullback random attractors for stochastic magnetohydrodynamics equations. Physica D 382, 46–57...
    • 35. Wang, S., Li, Y.: Galerkin stability of pullback attractors for nonautonomous nonlocal equations. Discrete Contin. Dyn. Syst. Ser. S 16,...
    • 36. Wu, S., Huang, J.: Well-posedness and limit behavior of stochastic fractional Boussinesq equation driven by nonlinear noise. Physica D...
    • 37. Xu, J., Caraballo, T.: Long time behavior of stochastic nonlocal partial differential equations and Wong-Zakai approximations. SIAM J....
    • 38. Xu, J., Caraballo, T.: Dynamics of stochastic nonlocal reaction-diffusion equations driven by multiplicative noise. Anal. Appl. 21, 597–633...
    • 39. Xu, J., Zhang, Z., Caraballo, T.: Non-autonomous nonlocal partial differential equations with delay and memory. J. Differential Equations...
    • 40. Yang, S., Caraballo, T., Zhang, Q.: Sufficient and necessary criteria for backward asymptotic autonomy of pullback attractors with applications...
    • 41. Zelati, M.C., Kalita, P.: Minimality properties of set-valued processes and their pullback attractors. SIAM J. Math. Anal. 47, 1530–1561...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno