Ir al contenido

Documat


Sliding Homoclinic Loops in Planar Piecewise Linear Systems: Exact Existence, Bifurcation Mechanisms and Global Dynamics

  • Lei Wang [1] ; Xiaoqian Zhang [1] ; Xu Li [1]
    1. [1] Hefei University

      Hefei University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper investigates bifurcations and global dynamics induced by sliding homoclinic loops in planar piecewise-linear systems. Focusing on two fundamental classes (saddle-focus and saddle-center types), we first characterize tangent points, Poincaré maps, sliding sets, and pseudo-equilibria with their saddle-node bifurcations. Moreover, we establish the necessary and sufficient conditions for the existence of sliding homoclinic loops, proving a real unstable focus is essential. Furthermore, we determine the one-side stability and basins of attraction for the sliding homoclinic loops. Finally, we uncover novel bifurcation phenomena including co-occurrence of saddle-node and sliding homoclinic bifurcations, emergence of sliding limit cycles, and switching of the basins of attraction.

  • Referencias bibliográficas
    • 1. Andrade, K.D.S., Jeffrey, M.R., Martins, R.M., Teixeira, M.A.: Homoclinic boundary-saddle bifurcations in planar nonsmooth vector fields....
    • 2. Belykh, V.N., Barabash, N.V., Belykh, I.V.: Sliding homoclinic bifurcations in a lorenz-type system: Analytic proofs. Chaos: An Interdiscip....
    • 3. Bernardo, M.D., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth dynamical systems: Theory and applications, vol. 163. Springer...
    • 4. Cristiano, R., Carvalho, T., Pagano, D.J., Tonon, D.J.: Hopf and homoclinic bifurcations on the sliding vector field of switching systems...
    • 5. Filippov, A.F.: Differential equations with discontinuous righthand sides. Kluwer Academic Publishers, Dortrecht (1988)
    • 6. Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11(1), 181–211 (2012)
    • 7. Freire, E., Ponce, E., Torres, F.: A general mechanism to generate three limit cycles in planar Filippov systems with two zones. Nonlinear...
    • 8. Guardia, M., Seara, T.M., Teixeira, M.A.: Generic bifurcations of low codimension of planar Filippov Systems. J. Differential Equations...
    • 9. Guo, X., Pi, D., Gao, Z.: Bifurcation analysis of planar piecewise linear system with different dynamics. Int. J. Bifurc. and Chaos 26(11),...
    • 10. Huan, S.M., Yang, X.S.: On the number of limit cycles in general planar piecewise linear systems. Discrete Contin. Dynam. Systems 32(6),...
    • 11. Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar filippov systems. Int. J. Bifurc. chaos 13(08), 2157–2188...
    • 12. Li, S., Liu, C., Llibre, J.: On the poincaré-bendixson formula for planar piecewise smooth vector fields. J. Nonlinear Sci. 33(6), 118...
    • 13. Liang, F., Han, M., Zhang, X.: Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems. J. Differ....
    • 14. Llibre, J., Ponce, E., Teruel, A.E.: Horseshoes near homoclinic orbits for piecewise linear differential systems in R3. Int. J. Bifurc....
    • 15. Llibre, J., Ponce, E., Teruel, A.E.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11(01), 118–211...
    • 16. Llibre, J., Santana, P.: Limit cycles and chaos in planar hybrid systems. Commun. Nonlinear Sci. Numer. Simul. 140, 108382 (2025)
    • 17. Lu, K., Yang, Q., Chen, G.: Singular cycles and chaos in a new class of 3D three-zone piecewise affine systems. Chaos: An Interdisciplinary...
    • 18. Novaes, D.D., Teixeira, M.A., Zeli, I.O.: The generic unfolding of a codimension-two connection to a two-fold singularity of planar filippov...
    • 19. Robinson, C.: Dynamical systems: stability, symbolic dynamics, and chaos. CRC press (1998)
    • 20. Santana, P., Serantola, L.: On the stability of hybrid polycycles. Qualitative Theory of Dynamical Systems 24, 82 (2025)
    • 21. Tiantian, W., Songmei, H., Xiaojuan, L.: Sliding homoclinic orbits and bifurcations of threedimensional piecewise affine systems. Nonlinear...
    • 22. Wang, L., Li, Q., Yang, X.S.: Periodic sinks and periodic saddle orbits induced by heteroclinic bifurcation in three-dimensional piecewise...
    • 23. Wang, L., Zhang, X.: Invariant tori, topological horseshoes, and their coexistence in piecewise smooth hybrid systems. Nonlinear Dyn....
    • 24. Wei, L., Zhang, X.: Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete &...
    • 25. Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos (2nd Ed). Springer-Verlag (2003)
    • 26. Xu, W., Xu, W., Cai, L.: Heteroclinic cycles in a new class of four-dimensional discontinuous piecewise affine systems. Chin. Phys. B...
    • 27. Yang, Q., Lu, K.: Homoclinic orbits and an invariant chaotic set in a new 4D piecewise affine systems. Nonlinear Dyn. 93(4), 2445–2459...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno