Ir al contenido

Documat


Finite Time Attractivity and Exponentially Stable of a Multi-Stage Epidemic System with Discontinuous Incidence

  • Wenjie Li [4] ; Letian Zhang [1] ; Jinde Cao [2] ; Fei Xu [3] ; Zuowei Cai [5]
    1. [1] Kunming University of Science and Technology

      Kunming University of Science and Technology

      China

    2. [2] Southeast University

      Southeast University

      China

    3. [3] Wilfrid Laurier University

      Wilfrid Laurier University

      Canadá

    4. [4] Southeast University & Kunming University of Science and Technology
    5. [5] Hunan Womens University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In order to better understand the mechanisms that control the spread of infectious diseases and thus effectively control the spread of diseases, in the context established by differential inclusion framework, this paper considers a discontinuous incidence function to obtain the periodic solution in a multi-stage disease transmission epidemic system. The positivity and boundedness are proved first. Then, under some assumptions and constraints, we discuss the existence of a periodic solution by using the Kakutani’s theorem of set-valued maps. Furthermore, by using the Lyapunov functional, we investigate the globally exponentially stable (GES) T -periodic solution in finite time. Finally, two examples are discussed to validate the correctness of the theoretical results. The conclusions will help to improve our understanding of the transmission mechanism of infectious diseases, so as to better control and prevent the spread of infectious diseases. The obtained results are new and extend the previous results in the literature.

  • Referencias bibliográficas
    • 1. Yang, J., Chen, Y., Uniya, T.: Threshold dynamics of an age-structured epidemic model with relapse and nonlinear incidence. IMA J. Appl....
    • 2. Moghadas, S., Gumel, A.: Global stability of a two-stage epidemic model with generalized non-linear incidence. Math. Comput. Simul. 60(1–2),...
    • 3. Filippov, A.F.: Differential equations with discontinuous righthand sides: control systems. Springer Science & Business Media, vol....
    • 4. Li, W., Yang, L., Cao, J.: Threshold dynamics of a degenerated diffusive incubation period hostpathogen model with saturation incidence...
    • 5. Li, W., Zhao, W., Cao, J.: Dynamics of a linear source epidemic system with diffusion and media impact. Z. Angew. Math. Phys., 144(75),...
    • 6. Duan, L., Fang, X., Huang, C.: Global exponential convergence in a delayed almost periodic nicholson’s blowflies model with discontinuous...
    • 7. Turkoglu, D., Altun, I.: A fixed point theorem for multi-valued mappings and its applications to integral inclusions. Appl. Math. Lett....
    • 8. Li, W., et al.: Global dynamics and threshold control of a discontinuous fishery ecological system. Chaos, Solitons & Fractals 182,...
    • 9. Duan, L., Huang, L.: Global dissipativity of mixed time-varying delayed neural networks with discontinuous activations. Commun. Nonlinear...
    • 10. Aubin, J.P., Cellina, A.: Differential Inclusions, volume 264 of Grundlehren der mathematischen Wissenschaften, (1984)
    • 11. Guo, Z., Huang, L., Zou, X.: Impact of discontinuous treatments on disease dynamics in an SIR epidemic model. Math. Biosci. & Eng....
    • 12. Cai, Z., Huang, J., Huang, L.: Periodic orbit analysis for the delayed Filippov system. Proc. American Math. Soc. 146(11), 4667–4682 (2018)
    • 13. Li, W., et al.: Large time behavior in a reaction diffusion epidemic model with logistic source. Chaos, Solitons & Fractals 177, 114282...
    • 14. Lin, G., Wang, L., Yu, J.: PBasins of attraction and paired Hopf bifurcations for delay differential equations with bistable nonlinearity...
    • 15. Zhang, S., Guo, H.: Global analysis of age-structured multi-stage epidemic models for infectious diseases. Appl. Math. Comput. 337, 214–233...
    • 16. Billard, L., Dayananda, P.W.A.: A multi-stage compartmental model for HIV-infected individuals: II - Application to insurance, functions...
    • 17. Kiouach, D., El-idrissi, S.E., Sabbar, Y.: An improvement of the extinction sufficient conditions for a higher-order. Appl. Math. Comput....
    • 18. Song, H., Jiang, W., Liu, S.: Global dynamics of two heterogeneous SIR models with nonlinear incidence and delays. Math. Biosci. 9(3),...
    • 19. Saransh, S., Sheth, S., Silpa, P.S.: Attaining herd immunity to a new infectious disease through multistage policies incentivising voluntary...
    • 20. Liu, G., Zhang, X.: Analysis on a diffusive two-stage epidemic model with logistic growth and saturated incidence rates. Nonlinear Analysis-Real...
    • 21. Zhang, S., Liu, Y., Cao, H.: Bifurcation analysis of an age-structured epidemic model with two stagedprogressions. Math. Methods Appl....
    • 22. Moghadas, S., Gumel, A.: Global stability of a two-stage epidemic model with generalized non-linear incidence. Math. Comput. Simul. 60(1–2),...
    • 23. Samanta, G.: Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with distributed time delay. Nonlinear Analysis-Real...
    • 24. Wu, P., He, Z., Khan, A.: Dynamical analysis and optimal control of an age-since infection HIV model at individuals and population levels....
    • 25. Li-Martin, A., Reyes-Carreto, R., Vargas-De-Leon, C.: Dynamics of a dengue disease transmission model with two-stage structure in the...
    • 26. Sazonov, I., Kelbert, M., Gravenor, M.B.: A two-stage model for the SIR outbreak: Accounting for the discrete and stochastic nature of...
    • 27. Wang, J., Liao, S.: A generalized cholera model and epidemic-endemic analysis. J. Biol. Dyn. 6(2), 568–589 (2012)
    • 28. Alexander, M.E., Moghadas, S.M.: Periodicity in an epidemic model with a generalized non-linear incidence. Math. Biosci. 189(1), 75–96...
    • 29. Kyrychko, Y.N., Blyuss, K.B.: Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate. Nonlinear...
    • 30. Lahrouz, A., Omari, L., Kiouach, D.: Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination....
    • 31. Khan, M.A., Badshah, Q., Islam, S.: Global dynamics of SEIRS epidemic model with non-linear generalized incidences and preventive vaccination,...
    • 32. Naim, M., Lahmidi, F., Namir, A.: Dynamics of an fractional SEIR epidemic model with infectivity in latent period and general nonlinear...
    • 33. Settati, A., Lahrouz, A., Zahri, M.: A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general...
    • 34. Rao, F., Mandal, P.S., Kang, Y.: Complicated endemics of an SIRS model with a generalized incidence under preventive vaccination and treatment...
    • 35. Wang, L., Zhang, X., Liu, Z.: An SEIR epidemic model with relapse and general nonlinear incidence rate with application to media impact....
    • 36. Li, W., Zhang, Y., Ji, J., Huang, L.: Dynamics of a diffusion epidemic SIRI system in heterogeneous environment. Z. Angew. Math. Phys....
    • 37. Khan, M., Khan, Y., Khan, T.: Dynamical system of a SEIQV epidemic model with nonlinear generalized incidence rate arising in biology,...
    • 38. Liu, W., Levin, S., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biology,...
    • 39. Li, W., Guan, Y., Cao, J., Xu, F.: A note on global stability of a degenerate diffusion avian influenza model with seasonality and spatial...
    • 40. Duan, L., Liu, J., Huang, C., Wang, Z.: Finite-fixed-time anti-synchronization of neural networks with leakage delays under discontinuous...
    • 41. Li, W., Li, G., Cao, J., Xu, F.: Dynamics analysis of a diffusive SIRI epidemic system under logistic source and general incidence rate....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno