Ir al contenido

Documat


Periodic Solutions and KAM Tori for the Planar Non-Homogeneous Straight Segment

  • Angelo Alberti [1] ; Claudio Vidal [2]
    1. [1] Universidade Federal de Sergipe

      Universidade Federal de Sergipe

      Brasil

    2. [2] Universidad del Bío-Bío

      Universidad del Bío-Bío

      Comuna de Concepción, Chile

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work we consider the planar motion of an infinitesimal mass attracted by the gravitational force induced by a body modelled as a non-homogeneous straight segment. We consider two situations: the segment can rotate uniformly with angular velocityω = 0, or it is fixed (i.e.,ω = 0). The aim of this paper is to prove the existence of different families of periodic solutions for this problem, such as those obtained via the averaging method for Hamiltonian systems or the continuation method of Poincaré by using a discrete symmetry. We prove the existence of several families of periodic solutions as a continuation of the circular and elliptical orbits of the (fixed or rotating) Kepler problem in the planar case. We also provide information on the linear stability of the periodic solutions. Furthermore, we prove the existence of KAM tori close to some of the previously stable periodic solutions.

  • Referencias bibliográficas
    • 1. Alberti, A., Vidal, C.: Dynamics of a particle in a gravitational field of a homogeneous annulus disk. Celest. Mech. Dyn. Astron. 98, 75–93...
    • 2. Alberti, A., Vidal, C.: Periodic solutions of symmetric Kepler perturbations and applications. J. Non. Math. Phys. 23(3), 439–465 (2016)
    • 3. Alberti, A., Vidal, C.: Periodic solutions for the spatial non-homogeneous straight segment problem. Journal of Nonlinear Mathematical...
    • 4. Arnold, V., Kozlov, V., Neishtadt, A.: Mathematical Aspects of Classical and Celestial Mechanics Encyclopaedia of Mathematical Sciences,...
    • 5. Bartczak, P., Breiter, S.: Double material segment as the model of irregular bodies. Celest. Mech. Dyn. Astron. 86, 131–141 (2003)
    • 6. Boccaleti, D., Pucacco, G.: Theory of Orbits: Integrable Systems and Non-Perturbative Methods. Springer-Verlag, Berlin (1996)
    • 7. Churchill, R.C., Kummer, M., Rod, D.L.: On averaging, reduction, and symmetry in Hamiltonian systems. J. Differ. Equ. 49, 359–414 (1983)
    • 8. Duboshin, G.: On one particular case of the problem of the translational-rotational motion of two bodies. Sov. Astron. 3, 154 (1959)
    • 9. Elipe, A., Lara, M.: A simple model for the chaotic motion around (433) eros. J. Astronaut. Sci. 51, 391–404 (2004)
    • 10. Geissler, P., Petit, J.M., Durda, D.D., Greenberg, R., Bottke, W., Nolan, M., Moore, J.: Erosion and ejecta reaccretion on 243 ida and...
    • 11. Gutiérrez, J.D., Tresaco, E., Riaguas, A.: Orbital analysis in the gravitational potential of elongated asteroids. Astrophys. Space Sci....
    • 12. Han, Y., Li, Y., Yi, Y.: Invariant tori in Hamiltonian systems with high order proper degeneracy. Ann. Henri Poincaré 10, 1419–1436 (2010)
    • 13. Kellogg, O.D.: Foundations of Potential Theory, Springer, (1967)
    • 14. MacMillan, W.D.: The Theory of the Potential. Dover Publications Inc, New York (1958)
    • 15. Martínez, E., Vidarte, J., Zapata, J.L.: Periodic orbits and KAM tori of a particle around a homogeneous elongated body. Dynamical Systems...
    • 16. Martínez, E., Vidarte, J., Zapata, J.L.: Modeling and dynamics near irregular elongated asteroids arXiv:2411.14240 (2024)
    • 17. Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical System and the N-Body Problem. Springer-Verlag, New York (1972)
    • 18. Meyer, K.R., Howison, C.R.: Doubly-symmetric periodic solutions in the spatial restricted three-Body Problem. J. Differ. Equ. 163, 174–197...
    • 19. Meyer, K.R., Palacián, J.F., Yanguas, P.: Geometric averaging of Hamiltonian systems: periodic solutions, stability, and KAM tori. SIAM...
    • 20. Najid, N.E., Elourabi, E.H.: Equilibria and stability around a straight rotating segment with a parabolic profile of mass density, The...
    • 21. Moser, J., Zehnder, E.J.: Notes on Dynamical Systems. Courant Lecture Notes in Mathematics. American Mathematical Society, Providence...
    • 22. Palacián, J.F., Yanguas, P., Romero, S.G.: Approximating the invariant sets of a finite straight segment near its collinear equilibria....
    • 23. Prieto-Llanos, T., Gomez-Tierno, M.A.: Station keeping at libration points of natural elongated bodies. J. Guid. Control. Dyn. 17, 787–794...
    • 24. Reeb, G.: Sur certaines propriétés topologiques des trajectoires des systèmes dynamiques,. Acad. Roy. Sci. Lett. et Beaux-Arts de Belgique....
    • 25. Riaguas, A., Elipe, A., Lara, M.: Periodic orbits around a massive straight segment. Celest. Mech. Dyn. Astron. 73, 169–178 (1999)
    • 26. Riaguas, A., Elipe, A., Lopez-Moratalla, T.: Non-linear stability of the equilibria in the gravity field of a finite straight segment....
    • 27. Romanov, V.A., Doedel, E.J.: Periodic Orbits Associated with the libration points of the massive rotating straight segment. International...
    • 28. Szebehely, V.: Theory of Orbits. Academic Press, New York (1967)
    • 29. Yanguas, P., Palacián, J.F., Meyer, K.R., Dumas, H.S.: Periodic solutions in Hamiltonian systems, averaging, and the Lunar problem. SIAM...
    • 30. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations...
    • 31. Zeng, X., Zhang, Y., Yu, Y., Liu, X.: The dipole segment model for axisymmetrical elongated asteroids. Astron. J. 155, 85 (2018)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno