Ir al contenido

Documat


Dynamic Analysis of a Nonlocal and Delayed Reaction-Diffusion Zika Virus Model with Spatial Heterogeneity

  • Jingyun Shen [1] ; Shengfu Wang [1] ; Hong Cao [1] ; Linfei Nie [1]
    1. [1] Xinjiang University

      Xinjiang University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • To explore the effects of latent periods in humans and vectors on the propagation of the Zika virus in a heterogeneous environment, a nonlocal and delayed reaction-diffusion model incorporating various transmission pathways and general incidences is developed. The well-posedness of the model is established, including the existence of global positive solutions and a global attractor. By applying spectral theory, we define the basic reproduction number R0 and derive its variational expression. Specifically, if R0 ≤ 1, the disease-free steady state (DFSS) is globally asymptotically stable. In contrast, if R0 > 1, the disease is persistent, and the model exhibits at least one positive steady state (PSS). For the particular situation of spatial homogeneity, the global attractivity of the PSS is established through the construction of suitable Lyapunov functional. Finally, numerical simulations demonstrate the primary theoretical conclusions and analyze the effects of latent periods and diffusion coefficients on the spread of the virus, as well as the sensitivity of the key parameters of the model to R0.

  • Referencias bibliográficas
    • 1. Foy, B.D., Kobylinski, K.C., Foy, J.L., et al.: Probable non-vector-borne transmission of zika virus, colorado. USA. Emerg. Infect. Dis....
    • 2. Musso, D., Roche, C., Robin, E., et al.: Potential sexual transmission of zika virus. Emerg. Infect. Dis. 21(2), 359–361 (2015)
    • 3. Moreira, J., Peixoto, T.M., Siqueira, A.M., et al.: Sexually acquired zika virus: a systematic review. Clin. Microbiol. Infec. 23(5), 296–305...
    • 4. Lucchese, G., Kanduc, D.: Zika virus and autoimmunity: from microcephaly to guillain-barre´ syndrome, and beyond. Autoimmun. Rev. 15(8),...
    • 5. WHO: World Health Organization. https://www.who.int/publications/m/item/epi-win-digest-7-zikavirus-disease
    • 6. Paho: Pan American Health Organization. https://www.paho.org/zika
    • 7. Zhang, Q., Sun, K.Y., Chinazzi, M., et al.: Spread of zika virus in the americas. Proc. Natl. Acad. Sci. 114(22), E4334–E4343 (2017)
    • 8. Gao, D.Z., Lou, Y.J., He, D.H., et al.: Prevention and control of zika as a mosquito-borne and sexually transmitted disease: a mathematical...
    • 9. Yuan, X.Y., Lou, Y.J., He, D.H., et al.: A zika endemic model for the contribution of multiple transmission routes. Bull. Math. Biol. 83,...
    • 10. Cai, L.M., Li, X.Z., Fang, B., et al.: Global properties of vector-host disease models with time delays. J. Math. Biol. 74(6), 1397–1423...
    • 11. Agusto, F.B., Bewick, S., Fagan, W.F.: Mathematical model for zika virus dynamics with sexual transmission route. Ecol. Complex. 29, 61–81...
    • 12. Wikan, N., Smith, D.R.: Zika virus: history of a newly emerging arbovirus. Lancet Infect. Dis. 16(7), e119–e126 (2016)
    • 13. Li, M.S., Zhao, H.Y.: Dynamics of a reaction-diffusion dengue fever model with incubation periods and vertical transmission in heterogeneous...
    • 14. Zhao, H.Y., Wang, K., Wang, H.: Basic reproduction ratio of a mosquito-borne disease in heterogeneous environment. J. Math. Biol. 86,...
    • 15. Yamazaki, K.: Zika virus dynamics partial differential equations model with sexual transmission route. Nonlinear Anal. Real World Appl....
    • 16. Hasan, B., Singh, M., Richards, D., et al.: Mathematical modelling of zika virus as a mosquito-borne and sexually transmitted disease...
    • 17. Wang, L.P., Wu, P.: Threshold dynamics of a zika model with environmental and sexual transmissions and spatial heterogeneity. Z. Angew....
    • 18. Zhang, L., Zhao, X.Q.: Asymptotic behavior of the basic reproduction ratio for periodic reactiondiffusion systems. SIAM J. Math. Anal....
    • 19. Wang,W., Zhou,M.C., Zhang, T.H., et al.: Dynamics of a zika virus transmission model with seasonality and periodic delays. Commun. Nonlinear...
    • 20. Ren, X.Z., Wang, K.F., Liu, X.N.: Dynamics on a degenerated reaction-diffusion zika transmission model. Appl. Math. Lett. 150, 108935...
    • 21. Britton, N.F.: Aggregation and the competitive exclusion principle. J. Theoret. Biol. 136(1), 57–66 (1989)
    • 22. Ruan, S.G.: Spatial-temporal dynamics in nonlocal epidemiological models. Mathematics for life science and medicine. Springer, Berlin...
    • 23. Guo, Z.M., Wang, F.B., Zou, X.F.: Threshold dynamics of an infective disease model with a fixed latent period and non-local infections....
    • 24. Wang, W., Wang, X.T., Wang, H.: Spatial dynamics of a generalized cholera model with nonlocal time delay in a heterogeneous environment....
    • 25. Wu, P., Zhao, H.Y.: Dynamical analysis of a nonlocal delayed and diffusive HIV latent infection model with spatial heterogeneity. J. Franklin...
    • 26. Sun, G.Q., Zhang, H.T., Chang, L.L., et al.: On the dynamics of a diffusive foot-and-mouth disease model with nonlocal infections. SIAM...
    • 27. Shu, H.Y., Ma, Z.W., Wang, H.: Diffusive host-pathogen model revisited: nonlocal infections, incubation period and spatial heterogeneity....
    • 28. Li, F.X., Zhao, X.Q.: Global dynamics of a nonlocal periodic reaction-diffusion model of bluetongue disease. J. Differential Equations...
    • 29. Metz, J.A., Diekmann, O.: The Dynamics of Physiologically Structured Populations. Springer-Verlag, Berlin (1986)
    • 30. Lou, Y.J., Zhao, X.Q.: A reaction-diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62, 543–568...
    • 31. Anderson, R.M., May, R.M.: Population biology of infectious diseases: part I. Nature 280, 361–367 (1979)
    • 32. Li, M.T., Jin, Z., Sun, G.Q., et al.: Modeling direct and indirect disease transmission using multi-group model. J. Math. Anal. Appl....
    • 33. Nakiyama, R., Tanaka, Y., Yokota, T.: Asymptotic stability of disease-free equilibria in a diffusive logistic SIR epidemic model with...
    • 34. Wu, S.X., Wang, Z.C., Ruan, S.G.: Hopf bifurcation in an age-structured predator-prey system with beddington-deangelis functional response...
    • 35. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society,...
    • 36. Martin, R.H., Smith, H.L.: Abstract functional differential equations and reaction-diffusion systems. Trans. Amer. Math. Soc. 321(1),...
    • 37. Wu, J.H.: Theory and Applications of Partial Functional Differential Equations. Springer-Verlag, New York (1996)
    • 38. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)
    • 39. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer-Verlag, New York (1984)
    • 40. Shu, H.Y., Ma, Z.W., Wang, X.S.: Threshold dynamics of a nonlocal and delayed cholera model in a spatially heterogeneous environment....
    • 41. Wang, W.D., Zhao, X.Q.: Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11(4), 1652–1673 (2012)
    • 42. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl....
    • 43. Thieme, H., Zhao, X.Q.: A non-local delayed and diffusive predator-prey model. Nonlinear Anal. Real World Appl. 2(2), 145–160 (2001)
    • 44. Zhao, X.Q.: The linear stability and basic reproduction numbers for autonomous FDEs. Discrete Contin. Dyn. Syst. Ser. S 17(2), 708–719...
    • 45. Li, Z.M., Zhao, X.Q.: Global dynamics of a time-delayed nonlocal reaction-diffusion model of withinhost viral infections. J. Math. Biol....
    • 46. Wang, J.P., Wang, K., Zhou, P., et al.: Asymptotic profiles of basic reproduction number for a degenerate reaction-diffusion host-pathogen...
    • 47. Zhao, X.Q.: Dynamical Systems in Population Biology, 2nd edn. Springer, New York (2017)
    • 48. Magal, P., Zhao, X.Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37(1), 251–275...
    • 49. Liang, X., Zhang, L., Zhao, X.Q.: Basic reproduction ratios for periodic abstract functional differential equations (with application...
    • 50. Toland, J.: Diffusion Equations (Translations of Mathematical Monographs). American Mathematical Society Providence, USA (1995)
    • 51. Groeger, J.: Divergence theorems and the supersphere. J. Geom. Phys. 77, 13–29 (2014)
    • 52. Li, J., Zou, X.F.: Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain. Bull. Math....
    • 53. Lv, Y.F., Pei, Y.Z., Yuan, R.: Complete global analysis of a diffusive NPZ model with age structure in zooplankton. Nonlinear Anal. Real...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno