Ir al contenido

Documat


Evaluación de las reglas más comunes de combinación de los efectos de las componentes horizontales de un terremoto

  • Alfredo Reyes Salazar [1] ; José Alfredo Juárez Duarte [1] ; Arturo López Barraza [1] ; Juan de Dios Garay Morán [1] ; Juan Ignacio Velázquez Dimas [1]
    1. [1] Universidad Autónoma de Sinaloa

      Universidad Autónoma de Sinaloa

      México

  • Localización: Ingeniería sísmica, ISSN-e 2395-8251, Nº. 73, 2005, págs. 27-53
  • Idioma: español
  • DOI: 10.18867/ris.73.63
  • Enlaces
  • Resumen
    • español

      Se estudia la precisión de las reglas de la Raíz Cuadrada de la Suma de los Cuadrados (SRSS) y la del 30 por-ciento (30%), las que comúnmente se usan en la estimación del efecto combinado de las componentes horizontales de terremotos. Las respuestas sísmicas máximas de varios modelos estructurales se estiman de la forma más real posible aplicando simultáneamente ambas componentes. Los resultados se comparan con los obtenidos de las reglas de combinación. El estudio numérico indica que ambas reglas estiman apropiadamente el efecto combinado en términos de carga axial para el caso elástico. Sin embargo, para el caso inelástico dicho efecto puede ser subestimado. Se muestra que dicha subestimación es mayor para la regla SRSS que para la del 30%. No se observa correlación alguna entre el nivel de subestimación y la altura de los marcos o el período predominante de los terremotos. Los resultados muestran también la importancia de la razón de las respuestas máximas de cada componente. Con base en los resultados obtenidos en este estudio, se concluye que los requerimientos de diseño sísmico para la estimación de la respuesta combinada deben ser modificados. Se proponen nuevas formas de combinación.

    • English

      The accuracy of the Square Root of the Sum of the Squares (SRSS) and the 30-percent (30%) rules, commonly used to estimate the effect of the horizontal components of earthquakes, is studied. The maximum seismic responses of several structural models are estimated as realistically as possible by applying simultaneously both horizontal components. The results are compared with those obtained by the combination rules. The numerical study indicates that both, the SRSS and the 30% rules, properly estimate the maximum combined axial effect for elastic analysis. For the inelastic case however, they may underestimate the combined axial loads. It is observed that the underestimation is more for the SRSS than for the 30% rule. The level of underestimation cannot be correlated with the height of the frames or the predominant period of the earthquakes. The results also show the importance of the ratio of the maximum individual responses. Based on the results obtained in this study, it is concluded that the combination rules for the effects of the horizontal components of earthquakes, used in design codes, need to be modified. New combination ways are proposed.

  • Referencias bibliográficas
    • Bathe, K J (1982), Finite element procedures in engineering analysis, Prentice-Hall, Englewood Cliffs, Nueva Jersey.
    • Clough, R W y J Penzien (1993), Dynamic of structures, McGraw Hill, Nueva York.
    • Correnza, J C y G L Hutchinson (1994), “Effect of transverse load resisting elements on inelastic response of eccentric-plan buildings”, Earthquake...
    • Der Kiureghian, A (1981), “A response spectrum method for random vibration analysis of
    • MDOF systems”, Earthquake Engineering and Structural Dynamics, Vol. 9, pp. 419-435.
    • Fernández-Dávila, I, S Cominetti y E F Cruz (2000), “Considering the bidirectional effect and the seismic angle variations in buildings design”,...
    • Gao, L y A Haldar (1995), “Nonlinear seismic response of space structures with PR connections”, International Journal of Microcomputers in...
    • Hernández, J J y O A López (2003), “Evaluation of combination rules for peak response
    • calculation in three-component seismic analysis”, Earthquake Engineering and Structural
    • Dynamics, Vol. 32, pp. 1585-1602.
    • Haldar, A y S Mahadevan (2000), Probability, reliability and statistical methods in engineering design, John Wiley and Sons, Nueva York.
    • Kondo, K y S N Atluri (1987), “Large deformation elasto-plastic analysis of frames under nonconservative loading using explicitly derived...
    • Leger, P y S Dussault (1992), “Seismic energy dissipation in MDOF structures”, ASCE Journal of Structural Engineering, Vol. 118, No. 5, pp....
    • López, O y R Torres (1997), “The critical angle of seismic incidence and the maximum structural response”, Earthquake Engineering and Structural...
    • López, O A y R Torres (1996), Discussion of “A clarification of orthogonal effects in a threedimensional seismic analysis”, Earthquake Spectra,...
    • López, O A, A K Chopra y J J Hernández (2001), “Evaluation of combination rules for maximum response calculation in multicomponent seismic...
    • Menun, C y A Der Kiureghian (1998), “A replacement for the 30%, 40% and SRSS rules for multicomponent seismic analysis”, Earthquake Spectra,...
    • Mahadevan, S y A Haldar (1991), “Stochastic FEM-based evaluation of LRFD”, ASCE Journal of Structural Engineering, Vol. 117, No. 5, pp. 1393-1412.
    • Newmark, N M (1975), “Seismic design criteria for structures and facilities, Trans-Alaska
    • pipeline system”, Memorias, U.S. National Conference on Earthquake Engineering, Earthquake Engineering Institute, pp. 94-103.
    • Newmark, N M y W J Hall (1982), Earthquake spectra and design, Monograph Series, Earthquake Engineering Research Institute, Berkeley, California.
    • Reyes-Salazar, A, A Haldar y M R Romero-López (2000), “Force reduction factor for SDOF and MDOF”, Memorias, Joint Specialty Conference on...
    • Reyes-Salazar, A (1997), “Inelastic seismic response and ductility evaluation of steel frames with fully, partially restrained and composite...
    • Rosenblueth, E y H Contreras (1977), “Approximate design for multicomponent earthquakes”, ASCE Journal of Engineering Mechanics, Vol. 103,...
    • Smeby, W y A Der Kiureghian (1985), “Modal combination rules for multicomponent
    • earthquake excitation”, Earthquake Engineering and Structural Dynamics, Vol. 13, pp. 1-12.
    • Wilson, E y M Button (1982), “Three-dimensional dynamic analysis for multicomponent earthquake spectra”, Earthquake Engineering and Structural...
    • Uang, C M (1991), “Establishing R (or Rw) and Cd factors for building seismic provisions”, ASCE Journal of Structural Engineering, Vol. 117,...
    • Wang, C H y Y K Wen (2000), “Seismic response of 3-D steel buildings with connection
    • fractures”, Memorias, 12th World Conference on Earthquake Engineering, Auckland, Nueva Zelanda, febrero, Artículo No. 814.
    • Wilson, E L, A Der Kiureghian y E P Bayo (1981), “A replacement for the SRSS Method in seismic analysis”, Earthquake Engineering and Structural...
    • Yamamura, N y H Tanaka (1990), “Response analysis of flexible MDOF systems for multiplesupport seismic excitation”, Earthquake Engineering...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno