Ir al contenido

Documat


The optimal explorer hypothesis and Its formulation as a combinatorial optimization problem

  • Autores: Mikel Malagón Azpeitia, Jon Vadillo Jueguen, Josu Ceberio Uribe Árbol académico, José Antonio Lozano Alonso Árbol académico
  • Localización: Actas del XVI Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados: (MAEB 2025) 28-30 de mayo, Donostia/San Sebastián / coord. por Leticia Hernando Rodríguez Árbol académico, Josu Ceberio Uribe Árbol académico, Jon Vadillo Jueguen, 2025, ISBN 978-84-1319-656-5, págs. 300-306
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This research project explores the hypothesis that, given a bounded number of steps in an environment, agents that most efficiently optimize their model of the environment are more likely to induce emergent intelligent behavior in a reward- free scenario. We refer to this as the optimal explorer hypothesis. The project aims to formalize and analyze this hypothesis, investigating its theoretical impli- cations and connections to related areas such as open-ended learning and active inference. Building on this foundation, we will develop a practical implementation of an approximate “optimal explorer” agent by formulating it as a combinatorial optimization problem and leveraging established methods from the field. Finally, we will conduct extensive experiments to evaluate whether the proposed agent induces emergent behaviors in diverse and challenging environments.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno