Ir al contenido

Documat


On Non Uniquely Ergodic Minimal IETs With Flips

    1. [1] Universidad de Murcia

      Universidad de Murcia

      Murcia, España

    2. [2] Universidad Politécnica de Cartagena

      Universidad Politécnica de Cartagena

      Cartagena, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 4, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The existence of non uniquely ergodic minimal interval exchange transformations with flips was proved in [16] by constructing (10, k)-IETs, 1 ≤ k ≤ 10. In this paper, we improve the technique of the construction, by the use of the so-called projetive pseudo-metric, and we get non uniquely ergodic minimal (6, k)-IETs, 1 ≤ k ≤ 6.

      Moreover, we introduce some general technical lemmas that will be useful to build new examples.

  • Referencias bibliográficas
    • 1. Angosto Hernández, C., Soler López, G.: Minimality and the Rauzy-Veech algorithm for interval exchange transformations with flips. Dyn....
    • 2. Athreya, J.S., Chaika, J.: The Hausdorff dimension of non-uniquely ergodic directions in H(2) is almost everywhere 12 . Geom. Topol. 19(6),...
    • 3. Birkhoff, G.: Lattice theory, volume XXV of AmericanMathematical Society Colloquium Publications. American Mathematical Society, Providence,...
    • 4. Chaika, J., Masur, H.: There exists an interval exchange with a non-ergodic generic measure. J. Mod. Dyn. 9, 289–304 (2015)
    • 5. Espín Buendía, J.G., Peralta-Salas, D., Soler López, G.: Existence of minimal flows on nonorientable surfaces. Discrete Contin. Dyn. Syst....
    • 6. Ferenczi, S., Hubert, P.: Minimality and unique ergodicity of Veech 1969 type interval exchange transformations. Geom. Dedicata, 218(3),...
    • 7. Furstenberg, H.: Stationary processes and prediction theory, volume No. 44 of Annals of Mathematics Studies. Princeton University Press,...
    • 8. Gutierrez, C.: Smooth nonorientable nontrivial recurrence on two-manifolds. J. Differential Equations 29, 388–395 (1978)
    • 9. Gutierrez, C., Lloyd, S., Medvedev, V., Pires, B., Zhuzhoma, E.: Transitive circle exchange transformations with flips. Discrete Contin....
    • 10. Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems, volume 54 of Encyclopedia of Mathematics and its Applications....
    • 11. Katok, A.B.: Invariant measures of flows on orientable surfaces. Dokl. Akad. Nauk SSSR 211, 775–778 (1973)
    • 12. Keane, M.: Interval exchange transformations. Math. Z. 141, 25–31 (1975)
    • 13. Keane, M.: Non-ergodic interval exchange transformations. Israel J. Math. 26, 188–196 (1977)
    • 14. Keynes, H., Newton, D.: A “minimal”, non-uniquely ergodic interval exchange transformation. Math. Z. 148, 101–105 (1976)
    • 15. Linero Bas, A., Soler López, G.: Minimal interval exchange transformations with flips. Ergodic Theory Dynam. Systems 38(8), 3101–3144...
    • 16. Linero Bas, A., Soler López, G.: Minimal non uniquely ergodic IETs with flips. J. Differential Equations 360, 232–259 (2023)
    • 17. Linero Bas, A., Soler López, G.: On the non existence of minimal non-uniquely ergodic 4-iets with flips. Universidades de Murcia y Politécnica...
    • 18. Mañé, R.: Ergodic theory and differentiable dynamics, volume 8 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics...
    • 19. Masur, H.: Interval exchange transformations and measured foliations. Ann. of Math. 2(115), 169–200 (1982)
    • 20. Nogueira, A.: Nonorientable recurrence of flows and interval exchange transformations. J. Differential Equations 70, 153–166 (1987)
    • 21. Nogueira, A.: Almost all interval exchange transformatios with flips are nonergodic. Ergodic Theory Dynam. Systems 9, 515–525 (1989)
    • 22. Rauzy, G.: Échanges d’intervalles et transformations induites. Acta Arith 34(4), 315–328 (1979)
    • 23. Sataev, E.A.: The number of invariant measures for flows on orientable surfaces. Izv. Akad. Nauk SSSR Ser. Mat., 39(4):860–878, 1975....
    • 24. Skripchenko, A., Troubetzkoy, S.: On the Hausdorff dimension of minimal interval exchange transformations with flips. J. Lond. Math. Soc....
    • 25. Skripchenko, A.S.: Renormalization in one-dimensional dynamics. Uspekhi Mat. Nauk, 78(6(474)):3– 46, (2023)
    • 26. Veech, W.A.: Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2. Trans. Amer. Math. Soc. 140,...
    • 27. Veech, W.A.: Interval exchange transformations. J. Anal. Math. 33, 222–272 (1978)
    • 28. Veech, W.A.: Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. 2(115), 201–242 (1982)
    • 29. Viana, M.: Ergodic theory of interval exchange maps. Rev. Mat. Complut. 19(1), 7–100 (2006)
    • 30. Yoccoz, J.C.: Échanges d’intervalles. Cours Collège de France. https://www.college-de-france.fr/ media/jean-christophe-yoccoz/UPL8726?...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno