Ir al contenido

Documat


An introduction to distributionally robust optimization

  • María Merino Maestre [1] Árbol académico ; Beñat Urrutia Redondo [1]
    1. [1] Universidad del País Vasco/Euskal Herriko Unibertsitatea

      Universidad del País Vasco/Euskal Herriko Unibertsitatea

      Leioa, España

  • Localización: BEIO, Boletín de Estadística e Investigación Operativa, ISSN 1889-3805, Vol. 41, Nº. 2, 2025, págs. 29-38
  • Idioma: español
  • Enlaces
  • Resumen
    • Initially developed in 1937, Operational Research focused on constructing deterministic models in order to describe and analyze real-world problems to aid decision-making. It was not until the early 1950s when uncertainty was incorporated into these models. Traditionally, two primary disciplines have been employed: Stochastic Optimization (SO) and Robust Optimization (RO). In SO, uncertain parameters are modeled as random variables with known probability distributions.

      However, there has been significant criticism of its optimistic results in recent years. In contrast, RO addresses uncertainty by considering the worst-case scenarios, leading to over-conservative decisions for other more likely scenarios. An emerging paradigm Distributionally Robust Optimization (DRO) has recently garnered significant attention due to its potential to address the limitations of both SO and RO. DRO serves as a unifying framework by introducing the concept of an ambiguity set, which encompasses a family of distributions deemed close-enough to a reference distribution.

  • Referencias bibliográficas
    • Alonso-Ayuso, A., Escudero, L., Monge, J., Morales, D., & Pardo, L. (2023). On distributionally robust MILP optimization with stochastic...
    • Bertsimas, D., Gupta, V., & Kallus, N. (2018). Robust sample average approximation. Mathematical Programming, 171, 217–282.
    • Conejo, A. J. (2019a). Adaptive robust optimization and its applications to power systems. Retrieved from https://www.youtube .com/watch?v=Zk6y8joQLNQ
    • Conejo, A. J. (2019b). Introduction to adaptive robust optimization (ARO). Retrieved from https://u.osu.edu/conejo.1/ courses/2019-dtu-seminar/
    • Dantzig, G. (1948). Linear programming and extensions. United States Air Force linear programming and extensions. Princeton University Press,...
    • Dantzig, G., & Madansky, A. (1961). On the solution of two-stage linear programs under uncertainty. In Proceedings of the fourth Berkeley...
    • Escudero, J., & Merino, M. (2016). A brief introduction to two-stage stochastic optimization. BEIO, Bolet´ın de Estad´ıstica e Investigacion...
    • Hu, Y., Chen, X., & He, N. (2021). On the bias-variance-cost tradeoff of stochastic optimization. Advances in Neural Information Processing...
    • Mohajerin Esfahani, P., & Kuhn, D. (2018). Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees...
    • Parzen, E. (1960). Modern probability theory and its applications (Vol. 10). Wiley.
    • Prokhorov, Y. V. (1956). Convergence of random processes and limit theorems in probability theory. Theory of Probability & Its Applications,...
    • Roos, E., & den Hertog, D. (2020). Reducing conservatism in robust optimization. INFORMS Journal on Computing, 32(4), 1109–1127.
    • Rosenhead, J., Elton, M., & Gupta, S. (1972). Robustness and optimality as criteria for strategic decisions. Journal of the Operational Research...
    • Saif, A., & Delage, E. (2021). Data-driven distributionally robust capacitated facility location problem. European Journal of Operational...
    • Urrutia, B. (2024). From stochastic optimization to distributionally robust optimization, an applicaiton to emergency medical services (Master...
    • Villani, C. (2009). Optimal transport: Old and new (Vol. 338). Springer.
    • Wald, A. (1949). Statistical decision functions. The Annals of Mathematical Statistics, 165–205.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno