Ir al contenido

Documat


Symbolic Learning using Brain Programming for the Recognition of Leukemia Images

  • Autores: Rocío Ochoa-Montiel, Humberto Sossa, Gustavo Olague Árbol académico, Mariana Chan-Ley, José Menéndez Árbol académico
  • Localización: Computación y Sistemas (CyS), ISSN 1405-5546, ISSN-e 2007-9737, Vol. 25, Nº. 4, 2021, págs. 707-718
  • Idioma: inglés
  • DOI: 10.13053/cys-25-4-4045
  • Enlaces
  • Resumen
    • Abstract: in this work, We propose an approach of symbolic learning for the recognition of leukemia images. Image recognition for cancer detection is often a subjective problem due to different interpretations by experts of the medical area. Feature extraction is a critical step in image recognition, and current automatic approaches are unintelligible since they need to be adapted to different image domains. We propose the paradigm of brain programming as a symbolic learning approach to address aspects involved in the derivation of knowledge that allows us to recognize subtypes of leukemia in color images. Experimental results provide evidence that the multi-class recognition task is achieved through the solutions discovered from multiples runs of the bioinspired model.

  • Referencias bibliográficas
    • Bhattacharjee, R.,Saini, L.-M.. (2015). Robust technique for the detection of acute lymphoblastic leukemia. 2015 IEEE Power, Communication...
    • Chan-Ley, M.,Olague, G.. (2020). Categorization of digitized artworks by media with brain programming. Appl. Opt.. 59. 4437
    • Dozal, L.,Olague, G.,Clemente, E.,Hernández, D. E.. (2014). Brain programming for the evolution of an artificial dorsal stream. Cognitive...
    • Fatichah, C.,Tangel, M.-L.,Yan, F.,Betancourt, J.-P.,Widyanto, R.,Dong, F.,Hirota, K.. (2015). Fuzzy feature representation for white blood...
    • Haugeland, J.. (1985). Artificial Intelligence: The Very Idea. MIT Press. Cambridge, Mass.
    • Jothi, G.,Hannah, I.,Ahmad, T.-A.,K-Renuga, D.. (2018). Rough set theory with jaya optimization for acute lymphoblastic leukemia classification....
    • Kampen, K.-R.. (2012). The discovery and early understanding of leukemia. Leukemia research. 36. 6-13
    • Khobragade, S.,Mor, D.-D.,Patil, C.-Y.. (2015). Detection of leukemia in microscopic white blood cell images. 2015 International Conference...
    • Laosai, J.,Chamnongthai, K.. (2018). Classification of acute leukemia using medical-knowledge-based morphology and cd marker. Biomedical Signal...
    • Mishra, S.,Majhi, B.,Sa, P.-K.. (2016). A survey on automated diagnosis on the detection of leukemia: A hematological disorder. 3rd International...
    • Mohammed, E.-A.,Mohamed, M.-M.-A.,Naugler, C.,Far, B.-H.. (2017). Toward leveraging big value from data: chronic lymphocytic leukemia cell...
    • Moshavash, Z.,Danyali, H.,Helfroush, M.-S.. (2018). An automatic and robust decision support system for accurate acute leukemia diagnosis...
    • Ochoa-Montiel, R.,Martínez, L.,Sossa, H.,Olague, G.. (2020). Handcraft and automatic approaches for the recognition of leukemia images. Research...
    • Ochoa-Montiel, R.,Olague, G.,Sossa, H.. (2020). Expert knowledge for the recognition of leukemic cells. Appl. Opt.. 59. 4448
    • Olague, G.,Clemente, E.,Dozal, L.,Hernández, D.. (2014). EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation...
    • Putzu, L.,Caocci, G.,Di-Ruberto, C.. (2014). Leucocyte classification for leukaemia detection using image processing techniques. Artificial...
    • Rawat, J.,Singh, A.,HS, B.,Virmani, J.,Devgun, J.-S.. (2017). Computer assisted classification framework for prediction of acute lymphoblastic...
    • Reta, C.,Altamirano, L.,Gonzálezand Raquel Díaz-Hernández, J.,Peregrina, H.,Olmos, I.,Alonso, J.,Lobato, R.. (2015). Correction: Segmentation...
    • Rodak, B. F.,Carr, J. H.. (2016). Clinical Hematology Atlas. W. B. Saunders Co..
    • Sahlol, A.-T.,Abdeldaim, A.-M.,Hassanien, A.-E.. (2018). Automatic acute lymphoblastic leukemia classification model using social spider optimization...
    • Savkare, S.-S.,Narote, S.-P.. (2015). Blood cell segmentation from microscopic blood images. International Conference on Information Processing...
    • Treisman, A.-M.,Gelade, G.. (1980). A feature-integration theory of attention. Cognitive Psychology. 12. 97-136
    • Vogado, L. H.,Veras, R. M.,Araujo, F. H.,Silva, R. R.,Aires, K. R.. (2018). Leukemia diagnosis in blood slides using transfer learning in...
    • (2021). World Health Organization. Cancer.
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno