Ir al contenido

Documat


Portfolio Construction Based on Implied Correlation Information and Value at Risk

  • Autores: Jesús Rogel-Salazar, Roberto Tiella
  • Localización: EconoQuantum, ISSN 1870-6622, ISSN-e 2007-9869, Vol. 12, Nº. 1, 2015, págs. 125-144
  • Idioma: inglés
  • Enlaces
  • Resumen
    • español

      Resumen Valor en Riesgo (VaR) es una medida usada comúnmente para establecer, dado un nivel de confianza, el peor caso de pérdidas en activos. La correlación implícita obtenida a partir de VaR es una forma alternativa del coeficiente de correlación calculada basándose en rendimiento histórico y en un pronóstico de la peor pérdida. En este trabajo presentamos un tratamiento accesible para estudiantes de economía, finanzas y áreas afines con el objetivo de familiarizar al lector con este estimador de riesgo. Con el uso de tres estudios de caso analizamos el efecto que la correlación implícita apartir de VaR tiene en carteras de tamaño creciente. Calculamos el VaR de cada activo así como la media de correlación implícita. Dicho valor es usado para ajustar las fracciones del presupuesto en la cartera original. Hacemos un seguimiento comparativo de carteras en un plazo de 50 días para identificar tendencias entre el tipo de cartera y riesgo encontrado.

    • English

      Abstract Value at Risk (VaR) is a commonly used downside-risk measure giving the worst-case asset loss over a target horizon for a given confidence level. Implied correlation from VaR is an alternative form of the correlation coefficient calculated not only based on historic performance, but taking into account a forecast of the worst-loss. Given its importance, here we present a treatment that is accessible to undergraduate students in economics, finance and similar areas with the aim of familiarising the reader with this risk measure. With the use of three case studies we analyse the effect that implied correlation from VaR has on portfolios of increasing asset size. The VaR of each asset is calculated as well as a mean implied correlation, , which is used to adjust the original portfolio’s invested fractions in order to view the shift in risk and return. We track comparative portfolios over a 50-day period to identify trends between portfolio type and risk encountered.

  • Referencias bibliográficas
    • Aneja, YP,Chandra, R,Gunay, E. (1989). A Portfolio Approach to Estimating the Average Correlation Coefficient for the Constant Correlation...
    • Beder, TS. (1995). VaR: Seductive but dangerous. Financial Analysts Journal. 51. 12-24
    • Binder, K. (2006). Mathematical Tools for Physicists. Wiley. Weinheim, Germany.
    • Brummelhuis, R,Córdoba, A,Quintanilla, M,Seco, L. (2002). Principal Component Value at Risk. Mathematical Finance. 12. 23-43
    • Brigham, E,Ehrhardt, M. (2013). Financial Management: Theory & Practice. Cengage Learning. Canada.
    • Campbell, R,Huisman, R,Koedijk, K. (2001). Optimal Portfolio Selection in a Value-at-Risk framework. Journal of Banking & Finance. 25....
    • Christoffersen, P,Hahn, J,Inoue, A. (2001). Testing and comparing Value-at-Risk measures. Journal of Empirical Finance. 8. 325
    • Cotter, J,Longin, F. (2007). Implied Correlation from VaR.
    • (2012). Datastream International. Thompson Reuters.
    • Dowd, K. (2002). An Introduction to Market Risk Measurement. John Wiley and Sons Ltd. Chester, UK.
    • Duffie, D,Pan, J. (1997). An Overview of Value At Risk. The Journal of Derivatives. 4. 7-49
    • Elton, EJ,Gruber, MJ,Brown, SJ,Goetzmann, WN. (2008). Modern Portfolio Theory and Investment Analysis. 8. Wiley. US.
    • Embrechts, P,McNeil, A,Straumann, D. (2002). Risk management: value at risk and beyond. Cambridge University Press. Cambridge, UK.
    • Erb, CB,Harvey, CR,Viskanta, E.. (1994). Forecasting international equity correlations. Financial Analysts Journal. 6. 32-45
    • Fabozzi, FJ,Gupta, F,Markowitz, M. (2002). The Legacy of Modern Portfolio Theory. The Journal of Investing. 11. 7-22
    • Holton, GA. (2003). Value-at-Risk: Theory and practice. Academic Press. California, US.
    • Hull, J,White, A. (1998). Incorporating volatility updating into the historical simulation method for value-at-risk. Journal of Risk. 1. 5-19
    • Jorion, P. (2001). Value at Risk. 2. McGraw-Hill. California, US.
    • Krauth, W. (2006). Statistical Mechanics: Algorithms and Computations. Oxford University Press. Oxford, UK.
    • Linsmeier, T,Pearson, N. (2000). Value at Risk. Financial Analysts Journal. 56. 1-21
    • Longin, F,Solnik, B.. (1995). Is the correlation in international equity returns constant: 1960-1990?. Journal of International Money and...
    • Markowitz, H. (1952). Portfolio Selection. The Journal of Finance. 7. 77-91
    • Miranda, MJM,Fackler, PL. (2002). Applied Computational Economics and Finance. MIT Press. US.
    • Ning, H. (2007). Hierarchical Portfolio Management: Theory and Applications.
    • (2001). Erasmus School of Economics Essential Statistics. 4. Chapman & Hall. Florida, US.
    • Sharpe, WF. (1963). A Simplified Model for Portfolio Analysis. Management Science. 9. 277
    • Strong, R. (2008). Portfolio Construction, Management, and Protection. 5. Cengage Learing. Canada.
    • Von Furstenberg, GM,Jeon, BM. (1989). International stock price movements: links and messages. Brookings Papers on Economic Activity. 1. 125
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno