Ir al contenido

Documat


Dimension formulas for spaces of vector-valued Siegel modular forms of degree 2 and level 2

  • Bergström, Jonas [2] ; Cléry, Fabien [1]
    1. [1] Loughborough University

      Loughborough University

      Charnwood District, Reino Unido

    2. [2] Stockholms Universitet (Estocolm, Suècia). Matematiska institutionen
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 69, Nº 2, 2025, págs. 367-388
  • Idioma: inglés
  • DOI: 10.5565/publmat6922505
  • Enlaces
  • Resumen
    • Using a description of the cohomology of local systems on the moduli space of abelian surfaces with a full level 2 structure, together with a computation of Euler characteristics, we find the isotypical decomposition, under the symmetric group on six letters, of spaces of vector-valued Siegel modular forms of degree 2 and level 2.

  • Referencias bibliográficas
    • T. Arakawa, Vector valued Siegel’s modular forms of degree two and the associated Andrianov L-functions, Manuscripta Math. 44(1–3) (1983),...
    • Arthur, Automorphic representations of GSp(4), in: Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins University...
    • Bergstrom and F. Clery, Siegel Modular Forms of degree 2 and Level 2 - Isotypical decompositions, Code in Sage, available at https://github.com/CleryFabien/SMF...
    • Bergstrom, F. Clëry, C. Faber, and G. van der Geer, Siegel Modular Forms of Degree 2 and 3 (2017). Available at http://smf.compositio.nl/.
    • J. Bergstrom, C. Faber, and G. van der Geer,Siegel modular forms of genus 2 and level 2: cohomological computations and conjectures, Int....
    • J. Bergstrom, C. Faber, and G. van der Geer, Siegel modular forms of degree three and the cohomology of local systems, Selecta Math. (N.S.)...
    • J. Bergstrom and G. van der Geer, Picard modular forms and the cohomology of local systems on a Picard modular surface, Comment. Math. Helv....
    • O. Bolza, On binary sextics with linear transformations into themselves, Amer. J. Math. 10(1) (1887), 47–70. DOI: 10.2307/2369402
    • J. H. Bruinier, G. van der Geer, G. Harder, and D. Zagier, The 1-2-3 of Modular Forms, Lectures at a Summer School in Nordfjordeid, Norway,...
    • F. Clery, C. Faber, and G. van der Geer, Covariants of binary sextics and modular forms of degree 2 with character, Math. Comp. 88(319) (2019),...
    • F. Clery, G. van der Geer, and S. Grushevsky ´ , Siegel modular forms of genus 2 and level 2, Internat. J. Math. 26(5) (2015), 1550034, 51...
    • F. Clery and G. van der Geer, On vector-valued Siegel modular forms of degree 2 and weight (j, 2), With two appendices by Ga¨etan Chenevier,...
    • E. Freitag, Ein Verschwindungssatz f¨ur automorphe Formen zur Siegelschen Modulgruppe, Math. Z. 165(1) (1979), 11–18. DOI: 10.1007/BF01175126
    • W. Fulton and J. Harris, Representation Theory. A First Course, Grad. Texts in Math. 129, Read. Math., Springer-Verlag, New York, 1991. DOI:...
    • E. Getzler, Euler characteristics of local systems on M2, Compositio Math. 132(2) (2002), 121–135.
    • T. Ibukiyama, On symplectic Euler factors of genus two, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30(3) (1984), 587–614.
    • T. Ibukiyama, Dimension formulas of Siegel modular forms of weight 3 and supersingular abelian varieties, in: Proceedings of the 4-th Spring...
    • J.-I Igusa, On Siegel modular forms genus two (II), Amer. J. Math. 86(2) (1964), 392–412. DOI: 10.2307/2373172
    • K. Martin, Refined dimensions of cusp forms, and equidistribution and bias of signs, J. Number Theory 188 (2018), 1–17. DOI: 10.1016/j.jnt.2018.01.015
    • D. Petersen, Cohomology of local systems on loci of d-elliptic abelian surfaces, Michigan Math. J. 62(4) (2013), 705–720. DOI: 10.1307/mmj/1387226161
    • D. Petersen, Cohomology of local systems on the moduli of principally polarized abelian surfaces, Pacific J. Math. 275(1) (2015), 39–61. DOI:...
    • M. A. Rosner, Parahoric restriction for GSp(4) and the inner cohomology of Siegel modular threefolds, Thesis (Ph.D.)-Ruprecht-Karls-Universit¨at...
    • M. Roy, R. Schmidt, and S. Yi, Dimension formulas for Siegel modular forms of level 4, With an appendix by Cris Poor and David S. Yuen, Mathematika...
    • R. Schmidt, Packet structure and paramodular forms, Trans. Amer. Math. Soc. 370(5) (2018), 3085–3112. DOI: 10.1090/tran/7028
    • R. Schmidt, Dimension formulas for spaces of Siegel modular forms of degree 2. Available at https://math.ou.edu/∼rschmidt/dimension formulas/
    • W. Stein, Modular Forms, a Computational Approach, With an appendix by Paul E. Gunnells, Grad. Stud. Math. 79, American Mathematical Society,...
    • R. Tsushima, On the spaces of Siegel cusp forms of degree two, Amer. J. Math. 104(4) (1982), 843–885. DOI: 10.2307/2374209
    • R. Tsushima, An explicit dimension formula for the spaces of generalized automorphic forms with respect to Sp(2, Z), Proc. Japan Acad. Ser....
    • S. Wakatsuki, Dimension formulas for spaces of vector-valued Siegel cusp forms of degree two, J. Number Theory 132(1) (2012), 200–253. DOI:...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno