Ir al contenido

Documat


On the Pythagoras number for polynomials of degree 4 in 5 variables

  • Santiago Laplagne [1]
    1. [1] Universidad de Buenos Aires

      Universidad de Buenos Aires

      Argentina

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 68, Nº. 1, 2025, págs. 343-348
  • Idioma: inglés
  • DOI: 10.33044/revuma.4224
  • Enlaces
  • Resumen
    • We give an example of a polynomial of degree 4 in 5 variables that is the sum of squares of 8 polynomials and cannot be decomposed as the sum of 7 squares. This improves the current existing lower bound of 7 polynomials for the Pythagoras number p(5, 4).

  • Referencias bibliográficas
    • G. Blekherman, Nonnegative polynomials and sums of squares, J. Amer. Math. Soc. 25 no. 3 (2012), 617–635. DOI MR Zbl
    • G. Blekherman, Nonnegative polynomials and sums of squares, in Semidefinite optimization and convex algebraic geometry, MOS-SIAM Ser. Optim....
    • J. Capco and C. Scheiderer, Two remarks on sums of squares with rational coefficients, in Algebra, logic and number theory, Banach Center...
    • L. Chua, D. Plaumann, R. Sinn, and C. Vinzant, Gram spectrahedra, in Ordered algebraic structures and related topics, Contemp. Math. 697,...
    • S. Laplagne, Pythagoras numbers, 2023. Available at https://bitbucket.org/slaplagne/ pythagoras-numbers/.
    • S. Laplagne and M. Valdettaro, Strictly positive polynomials in the boundary of the SOS cone, J. Symbolic Comput. 127 (2025), article no....
    • Maple 2015, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
    • P. A. Parrilo, Polynomial optimization, sums of squares, and applications, in Semidefinite optimization and convex algebraic geometry, MOS-SIAM...
    • C. Scheiderer, Sum of squares length of real forms, Math. Z. 286 no. 1-2 (2017), 559–570. DOI MR Zbl

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno