Ir al contenido

Documat


Special affine connections on symmetric spaces

  • Othmane Dani [1] ; Abdelhak Abouqateb [1]
    1. [1] Cadi Ayyad University

      Cadi Ayyad University

      Marrakech-Medina, Marruecos

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 68, Nº. 1, 2025, págs. 327-342
  • Idioma: inglés
  • DOI: 10.33044/revuma.4035
  • Enlaces
  • Resumen
    • Let (G, H, σ) be a symmetric pair and g = m ⊕ h the canonical decomposition of the Lie algebra g of G. We denote by ∇0 the canonical affine connection on the symmetric space G/H. A torsion-free G-invariant affine connection on G/H is called special if it has the same curvature as ∇0 . A special product on m is a commutative, associative, and Ad(H)-invariant product. We show that there is a one-to-one correspondence between the set of special affine connections on G/H and the set of special products on m. We introduce a subclass of symmetric pairs, called strongly semi-simple, for which we prove that the canonical affine connection on G/H is the only special affine connection, and we give many examples. We study a subclass of commutative, associative algebra which allows us to give examples of symmetric spaces with special affine connections. Finally, we compute the holonomy Lie algebra of special affine connections.

  • Referencias bibliográficas
    • S. Benayadi and M. Boucetta, Special bi-invariant linear connections on Lie groups and finite dimensional Poisson structures, Differential...
    • W. Bertram, The geometry of Jordan and Lie structures, Lecture Notes in Math. 1754, Springer, Berlin, 2000. DOI MR Zbl
    • S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics 80, Academic Press, New York-London, 1978....
    • N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ. 39, American Mathematical Society, Providence,...
    • S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. I, Interscience Publishers, New York-London, 1963. MR Zbl
    • S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II, Interscience Publishers, New York-London, 1969. MR Zbl
    • O. Loos, Symmetric spaces. I: General theory, W. A. Benjamin, New York-Amsterdam, 1969. MR Zbl
    • A. Nijenhuis, On the holonomy groups of linear connections. IA, IB. General properties of affine connections, Indag. Math. (Proc.) 56 (1953),...
    • K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 no. 1 (1954), 33–65. DOI MR Zbl
    • M. M. Postnikov, Geometry VI: Riemannian geometry, Encyclopaedia Math. Sci. 91, Springer, Berlin, 2001. DOI MR Zbl

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno