Ir al contenido

Documat


On a fractional Nirenberg equation: Compactness and existence results

  • Azeb Alghanemi [1] ; Randa Ben Mahmoud [2]
    1. [1] King Abdulaziz University

      King Abdulaziz University

      Arabia Saudí

    2. [2] University of Sfax

      University of Sfax

      Túnez

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 68, Nº. 1, 2025, págs. 251-276
  • Idioma: inglés
  • DOI: 10.33044/revuma.3833
  • Enlaces
  • Resumen
    • This paper deals with a fractional Nirenberg equation of order σ ∈ (0, n/2), n ≥ 2. We study the compactness defect of the associated variational problem. We determine precise characterizations of critical points at infinity of the problem, through the construction of a suitable pseudo-gradient at infinity. Such a construction requires detailed asymptotic expansions of the associated energy functional and its gradient. This study will then be used to derive new existence results for the equation.

  • Referencias bibliográficas
    • W. Abdelhedi and H. Chtioui, On a Nirenberg-type problem involving the square root of the Laplacian, J. Funct. Anal. 265 no. 11 (2013), 2937–2955....
    • W. Abdelhedi, H. Chtioui, and H. Hajaiej, A complete study of the lack of compactness and existence results of a fractional Nirenberg equation...
    • A. Alghanemi, W. Abdelhedi, and H. Chtioui, A complete study of the lack of compactness and existence results of a fractional Nirenberg equation...
    • A. Alghanemi and H. Chtioui, On a critical nonlinear problem involving the fractional Laplacian, Internat. J. Math. 32 no. 9 (2021), Paper...
    • A. Alghanemi and H. Chtioui, Perturbation theorems for fractional critical equations on bounded domains, J. Aust. Math. Soc. 111 no. 2 (2021),...
    • A. Bahri, Critical points at infinity in some variational problems, Pitman Research Notes in Mathematics Series 182, Longman Scientific &...
    • A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J. 81 no. 2 (1996),...
    • A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain,...
    • A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 no. 1 (1991), 106–172....
    • R. Ben Mahmoud and H. Chtioui, Existence results for the prescribed scalar curvature on S³, Ann. Inst. Fourier (Grenoble) 61 no. 3 (2011),...
    • R. Ben Mahmoud and H. Chtioui, Prescribing the scalar curvature problem on higher-dimensional manifolds, Discrete Contin. Dyn. Syst. 32 no....
    • M. Bhakta, S. Chakraborty, and P. Pucci, Fractional Hardy–Sobolev equations with nonhomogeneous terms, Adv. Nonlinear Anal. 10 no. 1 (2021),...
    • J. S. Case and S.-Y. A. Chang, On fractional GJMS operators, Comm. Pure Appl. Math. 69 no. 6 (2016), 1017–1061. DOI MR Zbl
    • S.-Y. A. Chang and M. d. M. Gonzalez, Fractional Laplacian in conformal geometry, Adv. Math. 226 no. 2 (2011), 1410–1432. DOI MR Zbl
    • Y.-H. Chen, C. Liu, and Y. Zheng, Existence results for the fractional Nirenberg problem, J. Funct. Anal. 270 no. 11 (2016), 4043–4086. DOI...
    • E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 no. 5 (2012), 521–573....
    • Z. Djadli, A. Malchiodi, and M. O. Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere. I. A perturbation result,...
    • Z. Djadli, A. Malchiodi, and M. O. Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere. II. Blow up analysis and...
    • F. Fang, Infinitely many non-radial sign-changing solutions for a fractional Laplacian equation with critical nonlinearity, 2014. arXiv:1408.3187...
    • C. Fefferman and C. R. Graham, Juhl’s formulae for GJMS operators and Q-curvatures, J. Amer. Math. Soc. 26 no. 4 (2013), 1191–1207. DOI MR...
    • C. R. Graham, R. Jenne, L. J. Mason, and G. A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc....
    • C. R. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 no. 1 (2003), 89–118. DOI MR Zbl
    • H. Hajaiej, L. Molinet, T. Ozawa, and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo–Nirenberg inequalities and...
    • T. Jin, Y. Li, and J. Xiong, On a fractional Nirenberg problem, Part I: Blow up analysis and compactness of solutions, J. Eur. Math. Soc....
    • T. Jin, Y. Li, and J. Xiong, On a fractional Nirenberg problem, Part II: Existence of solutions, Int. Math. Res. Not. IMRN no. 6 (2015), 1555–1589....
    • T. Jin, Y. Li, and J. Xiong, The Nirenberg problem and its generalizations: a unified approach, Math. Ann. 369 no. 1-2 (2017), 109–151. DOI...
    • Y. Li, Z. Tang, and N. Zhou, Compactness and existence results of the prescribing fractional Q-curvature problem on Sⁿ, Calc. Var. Partial...
    • Y. Y. Li, Prescribing scalar curvature on Sⁿ and related problems. I, J. Differential Equations 120 no. 2 (1995), 319–410. DOI MR Zbl
    • Y. Y. Li, Prescribing scalar curvature on Sⁿ and related problems. II. Existence and compactness, Comm. Pure Appl. Math. 49 no. 6 (1996),...
    • Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J. 80 no. 2 (1995), 383–417. DOI MR Zbl
    • S. Liang, P. Pucci, and B. Zhang, Existence and multiplicity of solutions for critical nonlocal equations with variable exponents, Appl. Anal....
    • A. Malchiodi and M. Mayer, Prescribing Morse scalar curvatures: pinching and Morse theory, Comm. Pure Appl. Math. 76 no. 2 (2023), 406–450....
    • P. Pucci and L. Temperini, Existence for fractional (p, q) systems with critical and Hardy terms in ℝⁿ, Nonlinear Anal. 211 (2021), Paper...
    • P. Pucci and L. Temperini, On the concentration-compactness principle for Folland–Stein spaces and for fractional horizontal Sobolev spaces,...
    • K. Sharaf, On the prescribed scalar curvature problem on Sⁿ: Part 1, asymptotic estimates and existence results, Differential Geom. Appl....
    • K. Sharaf and H. Chtioui, Conformal metrics with prescribed fractional Q-curvatures on the standard n-dimensional sphere, Differential Geom....
    • J. Wei and X. Xu, Prescribing Q-curvature problem on Sⁿ, J. Funct. Anal. 257 no. 7 (2009), 1995–2023. DOI MR Zbl
    • M. Zhu, Prescribing integral curvature equation, Differential Integral Equations 29 no. 9-10 (2016), 889–904. DOI MR Zbl

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno