Ir al contenido

Documat


Ground state solutions for Schrödinger equations in the presence of a magnetic field

  • Zhenyu Guo [1] ; Yan Deng [1]
    1. [1] Liaoning Normal University

      Liaoning Normal University

      China

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 68, Nº. 1, 2025, págs. 163-185
  • Idioma: inglés
  • DOI: 10.33044/revuma.3834
  • Enlaces
  • Resumen
    • In this paper, we are dedicated to studying the Schrödinger equations in the presence of a magnetic field. Based on variational methods, especially the mountain pass theorem, we obtain ground state solutions for the system under certain assumptions.

  • Referencias bibliográficas
    • A. Ambrosetti, V. Felli, and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur....
    • V. Ambrosio, Multiplicity and concentration results for fractional Schrödinger–Poisson equations with magnetic fields and critical growth,...
    • G. Arioli and A. Szulkin, A semilinear Schrödinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal. 170 no. 4 (2003),...
    • M. Badiale and G. Tarantello, A Sobolev–Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch....
    • J. Batt, W. Faltenbacher, and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal. 93 no. 2 (1986),...
    • Z. Binlin, M. Squassina, and Z. Xia, Fractional NLS equations with magnetic field, critical frequency and critical growth, Manuscripta Math....
    • J. Byeon and Z.-Q. Wang, Standing wave solutions with a critical frequency for nonlinear Schrödinger equations, in Topological methods, variational...
    • P. d’Avenia and J. Mederski, Positive ground states for a system of Schrödinger equations with critically growing nonlinearities, Calc. Var....
    • P. d’Avenia and M. Squassina, Ground states for fractional magnetic operators, ESAIM Control Optim. Calc. Var. 24 no. 1 (2018), 1–24. DOI...
    • A. Fiscella, A. Pinamonti, and E. Vecchi, Multiplicity results for magnetic fractional problems, J. Differential Equations 263 no. 8 (2017),...
    • Z. Guo, M. Melgaard, and W. Zou, Schrödinger equations with magnetic fields and Hardy–Sobolev critical exponents, Electron. J. Differential...
    • H. Leinfelder, Gauge invariance of Schrödinger operators and related spectral properties, J. Operator Theory 9 no. 1 (1983), 163–179. MR Zbl
    • X. Shang and J. Zhang, Existence and concentration of ground states of fractional nonlinear Schrödinger equations with potentials vanishing...
    • J. Sun, T.-f. Wu, and Z. Feng, Multiplicity of positive solutions for a nonlinear Schr¨odinger– Poisson system, J. Differential Equations...
    • M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications 24, Birkh¨auser Boston, Boston, MA, 1996....
    • X.-J. Zhong and C.-L. Tang, Ground state sign-changing solutions for a Schr¨odinger– Poisson system with a critical nonlinearity in R3, Nonlinear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno