This paper investigates the existence of weak solutions to a fuel cell problem modeled by a boundary value problem (BVP) in the multiregion domain. The BVP consists of the coupled Stokes/Darcy-TEC (thermoelectrochemical) system of elliptic equations, with Beavers–Joseph–Saffman and regularized Butler–Volmer boundary conditions being prescribed on the interfaces, porous-fluid and membrane, respectively. The present model includes macrohomogeneous models for both hydrogen and methanol crossover. The novelty in the coupled Stokes/Darcy-TEC system lies in the presence of the Joule effect together with the quasilinear character given by (1) temperature dependence of the viscosities and the diffusion coefficients; (2) the concentration-temperature dependence of Dufour–Soret and Peltier–Seebeck cross-effect coefficients, and (3) the pressure dependence of the permeability. We derive quantitative estimates of the solutions to clarify smallness conditions on the data. We use fixed-point and compactness arguments based on the quantitative estimates of approximated solutions.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados