We obtain a necessary and sufficient condition on the Haar coefficients of a real function ff defined on R+R+ for the Lipschitz αα regularity of ff with respect to the ultrametric δ(x,y)=inf{|I|:x,y∈I;I∈D}δ(x,y)=inf{|I|:x,y∈I;I∈D}, where DD is the family of all dyadic intervals in R+R+ and αα is positive. Precisely, f∈Lipδ(α)f∈Lipδ(α) if and only if |⟨fhjk⟩|≤C2−(α+1/2)j|⟨fhkj⟩|≤C2−(α+1/2)j for some constant CC, every j∈Zj∈Z and every k=0,1,2,…k=0,1,2,… Here, as usual, hjk(x)=2j/2h(2jx−k)hkj(x)=2j/2h(2jx−k) and h(x)=X[0,1/2)(x)−X[1/2,1)(x)h(x)=X[0,1/2)(x)−X[1/2,1)(x).
© 2008-2025 Fundación Dialnet · Todos los derechos reservados